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Multifunctions

A multifunction F : Rm → Rn is a map from Rm to the
subsets of Rn, that is for every x ∈ Rm, we associate a
(potentially empty) set F (x).
Its graph, denoted Gr(F ) is defined by

Gr(F ) = {(x , y)|y ∈ F (x)}.
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Measurability

A multifunction F : S → Rn is measurable if for every open
(closed) C ⊆ Rn,

{x ∈ S : F (x) ∩ C 6= ∅}

is Lebesgue measurable.
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Continuity

A multifunction F is called upper semi-continuous at x0

if for any open M containing F (x0) there is a
neighborhood Ω of x0 so that F (Ω) ⊂ M.

A multifunction F is called lower semi-continuous at x0

if for any y0 ∈ F (x0) and any neighborhood M of y0

there is a negihborhood Ω of x0 so that

F (x) ∩M 6= ∅, ∀x ∈ Ω.

A multifunction is continuous at x0 if it is both upper and
lower semi-continuous at x0.
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Lipschitz Continuity

A multifunction F is said to be Lipschitz continuous if there
is a k ≥ 0 so that for any x1, x2 ∈ Rm we have

F (x1) ⊂ F (x2) + k|x1 − x2|B.
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The selection problem

Given a multifunction F : Rm → Rn, a single-valued map
f : Rm → Rn is a selection if

f (x) ∈ F (x), ∀x ∈ Rm.

For what multifunctions are we assured of the existence of a
selection?
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Michael’s Selection Theorem and a Measurable
Selection Theorem

Theorem

Let F be a closed, convex, and lower semi-continuous
multifunction. Then there is a continuous selection from F .

Theorem

Let F be measurable, closed, and nonempty on S . Then
there is a measurable selection from F .
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Approximate Selections

Theorem

Let F be a convex, upper semi-continuous multifunction.
Then for ε > 0 there is a locally Lipschitz continuous
function fε whose range is in the convex hull of the range of
F and

Gr(fε) ⊂ Gr(F ) + εB.
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Differential Inclusions

We now turn our attention to the problem of solving
Differential Inclusions:

ẋ(t) ∈ F (x(t)), t ∈ [0,T ], (1)

with x(0) = x0. We will assume that F is closed, convex,
and Lipschitz continuous with constant k > 0. We shall see
presently that these assumptions are not too restrictive,
especially when we concern ourselves with problems from
control theory.
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An Example from Control Theory

Consider the control system

ẋ = f (x , u)

where u ∈ U ⊂ Rk . We assume that f is Lipschitz in x , and
we allow any measurable functions u : [0, t] → Rk so that
u(t) ∈ U a.e. and that for all x , f (x , u(t)) ∈ L1([0,T ]).

Consider the multifunction F defined by

F (x) = f (x ,U) =
⋃
u∈U

f (x , u).

We do the same for nonautonomous systems using the
right-hand side F (t, x(t)).
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Filippov’s Theorem

Theorem

Let f : Rm × Rk → Rn be continuous, and let v : Rm → Rn

be measurable. Assume U is compact so that v(x) ∈ f (x ,U)
a.e. Then there is a measurable u : Rm → U satisfying
v(x) = f (x , u(x)).
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Filippov’s Theorem

Sketch of Proof: We know that

U(x) = {u ∈ U| v(x) = f (x , u)}

has compact values. Let u(x) = (u1(x), . . . , uk(x)) ∈ U(x)
with u1(x) the smallest possible. We show that if ui (x) is
measurable on a compact set A for i < p then up(x) is as
well. Then we use the Lusin theorem to find a set Aε where
the ui (x)’s and v(x) are continuous and m(A \ Aε) ≤ ε. We
then show that the sublevel sets of up(x) restricted to Aε are
closed. So up(x) is measurable on Aε and we then repeat
Lusin on this set to get an A2ε. Since ε is arbitrary we use
Lusin again and see it is measurable on A.
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Filippov’s Theorem

Theorem

Let f : Rm × Rk → Rn be continuous, and let v : Rm → Rn

be measurable. Assume U is compact so that v(x) inf(x ,U)
a.e. Then there is a measurable u : Rm → U satisfying
v(x) = f (x , u(x)).

Obviously, trajectories of the control system are solutions to
the differential inclusion. This result means the converse
holds and so the system and the inclusion are equivalent.
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Continuity and Relaxation of Differential
Inclusions

Proposition

Let U be compact and f : Rm × U → Rn be continuous
(Lipschitz) in x . Then F : x → f (x ,U) is continuous
(Lipschitz).
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Continuity and Relaxation of Differential
Inclusions

Proof.

We know that F has closed graph and is locally bounded.
Let N be a neighborhood of F (x) with sequences {xi}, {yi}
so that xi → x0, yi ∈ F (xi ), and yi /∈ N. Since
cl{F (x)| |x − x0| < δ} is compact, WLOG assume yi → y0.
But the graph is closed, so y0 ∈ F (x0). So F is upper
semi-continuous. The lower semi-continuity follows from the
continuity of x → f (x , u), ∀u ∈ U. The Lipschitz
statements are similarly straightforward.
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Continuity and Relaxation of Differential
Inclusions

A trajectory is an absolutely continuous function
x : [a, b] → Rn such that

ẋ(t) ∈ F (t, x(t)) a.e.

We say F is integrably bounded if there is an integrable
function φ(·) such that |v | ≤ φ(t) for all v in F (t, x).

Proposition

A relaxed trajectory y is a trajectory for coF . That is,
ẏ(t) ∈ coF (t, y(t)). If F is integrably bounded then any
relaxed trajectory y is within δ of a trajectory for F in the
sup norm.
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Continuity and Relaxation of Differential
Inclusions
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Existence Theorem

Theorem

Assume that F (x) is closed, convex, and Lipschitzian. For
any x0 ∈ Rn there exist solutions to (1) with x(0) = x0.
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