
REMARKS ON THE ZETA FUNCTION OF A GRAPH
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Abstract. We make two observations about the zeta function of a graph.
First we show how Bass’s proof of Ihara’s formula fits into the framework
of torsion of complexes. Second, we show how in the special case of those
graphs that are quotients of the Bruhat-Tits tree for SL(2, K) for a local
nonarchimedean field K, the zeta function has a natural expression in terms
of the L-functions of Coexter systems.

1. Introduction

At the Conference itself I gave an overview of the origins of the concept of the
zeta function of a graph in the works of Ihara, and its motivation in trying to
understand the zeta functions of modular curves. Let

Γ ⊂ SL(2, Qp)

be a discrete cocompact and torsion-free subgroup. Let X be the Bruhat-Tits
building associated to SL(2, Qp). Ihara’s zeta function can be interpreted as the
zeta function of the finite quotient graph XΓ = Γ\X . In certain cases, Ihara
discovered an essential identity between the zeta function of the graph XΓ and
the zeta function of a certain Shimura curve XΓ reduced modulo the prime p. For
precise statements of Ihara’s results, see [17], [18], [19]. The relation between the
graph and the modular curve is via the theory of automorphic forms. There are
two salient points: (1) the zeta function of a modular curve (say for a congruence
subgroup Γ0(N)) can be computed via the action of the Hecke operator Tp on the
space of cusp forms of weight 2, and (2) the cusp forms come from a quaternion
algebra over Q by the Jacquet-Langlands correspondence, and the Hecke operator
can be interpreted as the adjacency operator of a finite graph that is a quotient of
the Bruhat-Tits tree for SL(2, Qp) (see [21, Ch. 9]). The group Γ comes from the
p-units in an order for the quaternion algebra.

Ihara’s results became one of the origins of the studies of the zeta functions of
Shimura varieties by Langlands, Rapoport and Kottwitz, which has culminated in
an “explicit” formula for the latter, at least for those Shimura varieties that are
moduli spaces of abelian varieties with additional structures (PEL types). A good
exposition of these results can be found in [23]. These formulas are very complicated
and hard to compute in examples, so it is desirable to have a more elementary and
combinatorial description.

The aim is to generalize this connection from Shimura curves to Shimura varieties
attached to higher-rank reductive algebraic groups G over Q. The idea is that the
Euler p-factor of the zeta function of the Shimura variety attached to G (assuming
G is of the sort that it has a Shimura variety) should be related to a combinatorially
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defined zeta function associated to the Bruhat-Tits building of the group G(Qp).
However, even before this can be attempted, a reasonable definition of the zeta
function for the finite quotients of the building X of G(Qp) must be given. There
are several ideas in this direction, two of which were discussed at the Conference
by Cristina Ballantine and Winnie Li. There is another approach, based on the
Selberg trace formula, by Anton Deitmar (see [7], [8], [9]). The relations among
these approaches and to the theory of Shimura varieties remains unclear. Over and
above the connection to Shimura curves, zeta functions of graphs are interesting in
their own right, and the search for higher-dimensional analogs seems worthwhile.

In this note I want to make two observations that do not seem to have been
noticed before concerning zeta functions of graphs. Before doing so, let us recall
the definitions. Let Y be a finite graph. If Y is connected, the universal covering
space Ỹ is a tree on which the group Γ = π1(Y ) acts fixed-point free and with
quotient Y . Let ρ : Γ → GL(V ) be a finite-dimensional representation, then the
zeta (or L) function is

Z(Y, ρ, u) =
∏

γ∈P(Γ)

1

det(1 − ρ(γ)udeg(γ))

= exp

(

∞
∑

m=1

Nm(Y, ρ)um/m

)

.

where the product ranges over all the equivalence classes of primitive cycles in the
graph Y . Recall that if Y is connected, there is a canonical bijective correspondence
of P(Γ) with the primitive conjugacy classes in π1(Y ). Here,

Nm(Y, ρ) =
∑

deg(γ)|m

deg(γ)Tr(ρ(γm/deg(γ))).

When ρ = 1 is the trivial representation, this is the number of closed, backtrackless
(or reduced) and tail-less paths in Y of length m (see [24], [25]). Bass’s treatment

[2] is more general in that he allows an action of a group Γ on a tree Ỹ which
has fixed points with finite isotropy groups, but then the interpretation of the zeta
function in terms of the quotient graph is more complicated. In the discussion that
follows, we will restrict to the case where ρ = 1 and the isotropy groups are trivial,
as this allows a more elementary exposition.

In general we will follow the notations of Bass’s paper [2]. Let V X be the set of r0

vertices of the graph X , and EX be the set of oriented edges. If r1 is the number of
geometric edges of X , the cardinality of EX is 2r1. There is an orientation reversal
J : EX → EX , and boundary maps ∂0, ∂1 : EX → V X . Recall that a path in
X of length n is a sequence c = (e1, . . . , en) of edges such that ∂0ei = ∂1ei−1 for
all 0 < i ≤ n, and that the path is reduced if ei 6= J(ei−1) for all 0 < i ≤ n. We
write (e1, . . . , en)red to indicate that the path is reduced. The path is closed if
∂1en = ∂0e1, and a closed path has no tail if en 6= J(e1). Two paths are equivalent
if one is gotten from the other by a cyclic shift of the edges.

Let C0(X) (resp. C1(X)) be the C-vector space spanned by V X (resp. EX).
There are a number of operators on these spaces and identities connecting them
(see [2, pp. 744-751]). We recall the endomorphism T of C1(X) defined by

T (e) =
∑

(e,e1)red

e1
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It is easily shown that

(1) Z(X, u) =
1

det(1 − uT )
,

which is equivalent to the identity

Tr(T m) = #{closed backtrackless tail-less paths of length m} = Nm(Y ).

This is Bass’s version of a formula discovered by Hashimoto, [13], [14], [15], [16],
and see the proof of proposition 3.3.

For each x ∈ V X we let

d(x) = degree of x = #{e ∈ EX | ∂0e = x},

q(x) = d(x) − 1 and define an operator Q : C0(X) → C0(X) via Q(x) = q(x)x,
which is the diagonal matrix whose terms are the vertex degrees minus 1. The
adjacency matrix is defined as

δ(x) =
∑

e∈EX
∂0e=x

∂1e

Then Bass’s generalization of Ihara’s formula for the zeta function of a graph is

(2) Z(X, u) =
(1 − u2)χ

det(1 − δu + Qu2)

where χ = r0 − r1 is the Euler characteristic of the graph (see also [26]).

2. Bass’s proof of Ihara’s formula

Comparison of equations (1) and (2) shows

(3)
det(1 − δu + Qu2)

det(1 − uT )
= (1 − u2)χ

This is very reminiscent of an index formula. There are proofs of Ihara’s formula
via Selberg trace formula methods ([1], [27, Ch. 24], [28], [29]). In some cases, the
Selberg trace formula can be related to geometric trace formulas in Lefschetz style,
this being a key point in the study of Shimura varieties and moduli spaces of shtuka.
I am unable to give a conceptual geometric proof of the identity (3), but I can show
how Bass’s proof of Ihara’s formula, which seems like an unmotivated manipulation
of identities, can be reformulated in terms of the torsion of complexes, an idea that
is central in many proofs of index formulas. Actually, all the formulas necessary for
this can be found in Bass’s paper, but Bass himself makes no comment on any of
this.

Proposition 2.1. Let

C∗ =
[

0 −−−−→ Cn
dn−−−−→ Cn−1 −−−−→ . . . C1

d1−−−−→ C0
d0−−−−→ 0

]

be a chain complex of finite-dimensional vector spaces over a field K. Suppose that

Φ = {Φi} : C∗ −→ C∗
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is a chain endomorphism. This induces an endomorphism on the homology of the
complex, and we have an identity

n
∏

i=0

det(Φ | Ci)
(−1)i

=

n
∏

i=0

det(Φ | Hi(C∗))
(−1)i

provided it makes sense, ie., none of the determinants is 0.

This is no doubt well-known; the additive form of it, namely the identity
∑

i

(−1)iTr (Φ | Ci) =
∑

i

(−1)iTr (Φ | Hi(C∗))

is a key step in many proofs of fixed-point/index formulas. The proof of these
identities is easily done by breaking the chain complex into short exact sequences,
stable for Φ,

0 −−−−→ Ker(di) −−−−→ Ci −−−−→ Im(di) −−−−→ 0

and
0 −−−−→ Im(di+1) −−−−→ Ker(di) −−−−→ Hi(C∗) −−−−→ 0

then concatenating.

Corollary 2.2. Let K be the field of real (or complex) numbers, and assume that
each Ci has a nondegenerate symmetric (or Hermitian) inner product. Let δi be
the adjoints of the operators di and

∆i = δidi + di+1δi+1

be the corresponding Laplacians. Then
n
∏

i=0

det(t − ∆i | Ci)
(−1)i

= tχ

where χ =
∑

i(−1)i dim Ci =
∑

i(−1)i dim Hi(C∗) is the Euler characteristic of the
complex.

Proof. By the Hodge theorem, Hi(C∗) is isomorphic to the space of ∆i-harmonic
forms, ie., to those elements of Ci annihilated by ∆i. Define Φi = t − ∆i. This is
a chain endomorphism because

∆idi+1 = di+1δi+1di+1 = di+1∆i+1

The corollary now follows from the proposition, because the Laplacians acting triv-
ially on homology, det(Φ | Hi(C)) = tdim Hi(C). �

Let C∗(X) be the complex associated to a graph X as above, with differential
∂0−∂1. The corollary says in this case that spectrum of ∆1 provides no information
not already contained in the spectrum of ∆0. Recall that for the trivial metric for
which the vertices (resp. edges) form an orthonormal basis, ∆0 = 1+Q−δ. Define
the operator ∂(u) = u∂0−∂1, where u is a formal parameter. This is a deformation
of the differential ∂(1) in the original complex. Let σ0 : C0(X) → C1(X) be defined
as

σ0(x) =
∑

e∈EX
∂0e=x

e

and a perturbation of this by σ(u) = uσ0. Let Φ0 = ∆(u) = 1 − δu + Qu2,
Φ1 = (1 − Tu)(1− Ju).
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Lemma 2.3. 1. Φ is a chain endomorphism of the complex C∗(X), ∂(u).
2. σ(u) is a chain-homotopy between Φ and the scalar endomorphism given

by (1 − u2), ie.,

∂(u)σ(u) = Φ0 − (1 − u2)

σ(u)∂(u) = Φ1 − (1 − u2)

Proof. 1. According to the formulas on pp. 747-748 of [2],

∂(u)Φ1 = ∂(u)σ(u)∂(u) + (1 − u2)∂(u) = Φ0∂(u).

2. This is the formula (15) on p.747 and the formula just preceding section 1.4 on
p. 748 of loc. cit. �

Applying proposition 2.1 to this situation, and using the fact that chain-homotopic
maps induce the same map in homology, we see:

det(1 − δu + Qu2)

det(1 − Tu) det(1 − Ju)
=

det(Φ | C0(X))

det(Φ | C1(X))

=
det(Φ | H0(C∗(X))

det(Φ | H1(C∗(X))

=
det(1 − u2 | H0(C∗(X))

det(1 − u2 | H1(C∗(X))

=
det(1 − u2 | C0(X))

det(1 − u2 | C1(X))

= (1 − u2)r0−2r1

Bass calculated by elementary means the formula det(1− Ju) = (1− u2)r1 , so this
completes the proof of Ihara’s formula.

3. L-functions of Coxeter systems

Let (W, S) be a Coxeter system (for the general theory see [6]). There is a
canonical length function l : W → N. Let q be a formal parameter, and let
Hq(W, S) be the associative C-algebra with basis {ew}w∈W and relations

(es + 1)(es − q) = 0 if s ∈ S

ewew′ = eww′ if l(ww′) = l(w) + l(w′)

See [6, Exercises 22-25, Ch. IV §2]. This is the Iwahori-Hecke algebra. If

ρ : Hq(W, S) → End(V )

is a representation on a finite-dimensional vector space V over C, we can define a
matrix-valued formal series:

L(W, S, ρ, u) =
∑

w∈W

ρ(ew)ul(w).

When q = 1, Hq(W, S) is the ordinary group-ring of W over C. If in addition,
ρ = 1, L(W, S, ρ, u) is the generating function that counts the elements in W of a
given length relative to S. Special cases of these series were studied by a number
of people, starting with Bott, who came upon them in the study of the loop spaces
of Lie groups (see [22]), but it was Gyoja ([11], [12]) who saw the importance of
including a nontrivial representation in the definition.
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More generally, for any subset I ⊂ S, we have a subgroup WI ⊂ W generated
by I , and we can define L(WI , S, ρ, u) as before, but with summation only over
w ∈ WI . Also, one can take for q a collection of numbers qs, s ∈ S, with qs = qs′ if
s and s′ are W -conjugate. A set u of corresponding variables are introduced with
the same property and ul(w) is defined as us1

us2
...usn

for a reduced decomposition
of w = s1...sn. Also, the Iwahori-Hecke algebra can be defined with respect to the
system q = {qs}.

Gyoja proved:

Theorem 3.1. L(W, S, ρ, u) is a rational matrix-valued function of u.

In fact there are simple recursion formulas for computing these, and explicit
evaluations for ρ = 1. That these functions are rational is also a consequence of the
fact that a Coxeter group has an automatic structure. Gyoja has also investigated
the zeros and poles of det L(W, S, ρ, u) as well as functional equations satisfied by
these in some cases.

Coxeter systems arise from Tits systems (G, B, N, S). The Weyl group of the
system, defined as W = N/B ∩ N is a Coxeter group, with S identified with a
subset of W . The key fact is the Bruhat decomposition:

G =
∐

w∈W

C(w), C(w) = BwB.

There are two cases of interest: W is finite, and W is affine. The first case arises
from taking G the rational points of a semisimple algebraic group over a field K; B
is a Borel subgroup, N the normalizer of a maximal split torus. The second case is
similar, but now K is a nonarchimedean local field, and B is an Iwahori subgroup.
In the second case, B is a compact subgroup, and taking a Haar measure µ on
G that assigns a mass of 1 to B, define H(G, B) to be the convolution algebra of
locally constant, compactly-supported B-biinvariant complex-valued functions on
G. Iwahori and Matsumoto proved, [20]:

Theorem 3.2. Let G be the group of K-rational points of a semisimple and simply
connected algebraic group over a nonarchimedean local field K. There is an iso-
morphism C(w) → ew from H(G, B) to Hq(W, S), where W is the Weyl group of
the Tits system, and qs = µ(BsB) = number of right B-cosets in BsB.

Remark. The result is true with appropriate modifications of the statement, for
the K-points of a reductive group.
Example: G = SL2(K) where K is a nonarchimedean local field. OK = O the
ring of integers and π a generator of its maximal ideal p. q the cardinality of O/p.

B =

{(

a b
c d

)

: a, d ∈ O×, b ∈ O, c ∈ p, ad − bc = 1

}

N = N(K) is the group of monomial matrices. T = T (K) is the group of diagonal
matrices. S = {s1, s2}, where

s1 =

(

0 −1
1 0

)

, s2 =

(

0 −1/π
π 0

)

qs1
= qs2

= q, and the building X is a q + 1-regular tree: the vertices are in 1-
1 correspondence with the lattices (rank 2 O-submodules L of V = K2) modulo
homothety L ∼ xL, all x ∈ K×. These fall into two orbits under G, the stabilizers
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corresponding to the two conjugacy classes of maximal compact subgroups U =
U1 = B∪Bs1B = SL2(O) and U2 = B∪Bs2B. The affine Weyl group is generated
by s1 and s2, and is the infinite dihedral group. We have (Ti = BsiB)

H(G, B) = C[T1, T2]nc, T 2
i − (q − 1)Ti − q = 0

The convolution algebra of complex-valued U -biinvariant functions of G is the
(usual) Hecke algebra. Letting T = Us1s2U , we have

H(G, U) = C[T ]

and there is an injection H(G, U) → H(G, B).
Let Γ ⊂ G = SL2(K) be a discrete cocompact subgroup. If M ⊂ G is a compact

subgroup, we denote by C(Γ\G/M) the space of functions f : G → C such that

f(γgm) = f(g) for all γ ∈ Γ, m ∈ M.

Now C(Γ\G/M) is a right module for the convolution algebra H(G, M).
Recall that Y = Γ\X is a finite (q + 1)-regular graph. It is bipartite: there

are two equivalence classes of vertices whose stabilizer subgroups are U1 and U2

respectively. Therefore, we have an isomorphism:

C0(X) = C(Γ\G/U1) ⊕ C(Γ\G/U2).

where C0(X) = Hom(C0(X),C) is the group of 0-cochains of the graph. The group
G acts transitively on the set of geometric edges of the tree X , thus the group of
geometric 1-cochains of the graph is

C1(X) = C(Γ\G/B).

Note that dim C1(X) = r1, whereas in Bass’s proof we had dim C1(X) = 2r1,
because the edges there came with two possible orientations. C1(X) is a right
module for the Iwahori-Hecke algebra H(G, B); let us denote the corresponding
representation by ρΓ.

Proposition 3.3. Let Γ ⊂ SL(2, K) be a discrete, cocompact and torsion-free
subgroup, where K is a nonarchimedean local field. Let X be the Bruhat-Tits tree
for SL(2, K), and XΓ = Γ\X the corresponding graph. In the notation introduced
above,

det L(W, S, ρΓ, u)

det L(W1, S, ρΓ, u) det L(W2, S, ρΓ, u)
= Z(XΓ, u)

where Wi is the subgroup generated by si.

Proof. Hashimoto [14, Main Theorem(I), pp. 224-225] showed that

Z(XΓ, u) = det(1 − u2ρ∗(T2T1))
−1

in the notations of loc. cit. See also the discussion in [14, pp. 248-253] and [16, pp.
176-178] linking this to the Tits system. Note that later on that page Hashimoto
redefines the zeta function so that the u2 term becomes u (compare with formula
0.15 in his paper). In our notation

ρ∗(T2T1) = ρΓ(es2
es1

) = ρΓ(es2
)ρΓ(es1

)

the last equation holding because es2s1
= es2

es1
, since 2 = l(s2s1) = l(s2) + l(s1).

On the other hand, Gyoja evaluated his L-function for the infinite dihedral group,
[11, Example 2.6, p. 97]. The result is, for any representation ρ:

L(W, S, ρ, u) = (1 + uρ(es1
))(1 − u2ρ(es2

)ρ(es1
))−1(1 + uρ(es2

))



8 J. WILLIAM HOFFMAN

It is easy to see that

L(Wi, S, ρ, u) = 1 + uρ(esi
)

for i = 1, 2, so the proposition follows by taking determinants. �

Remarks. (1.) Note that s2s1 is a generator of a canonical subgroup of W ,
namely the subgroup of translations.
(2.) In fact, Hashimoto’s results apply to discrete cocompact and torsion-free sub-
groups of the K-rational points G of any semisimple simply-connected group over
K of rational rank 1. In this case the building is also a tree, but it is biregular
in general: in the above notation we have qs1

= qd1 and qs2
= qd2 are powers of

the residual characteristic, possibly different, so we have a (qd1 , qd2)-regular tree.
Hence, proposition 3.3 holds in this case as well.

4. Higher-dimensional buildings

Let G be the group of K-rational points of a semi-simple, simply connected
algebraic group G over a nonarchimedean local field K. There is a contractible
cell complex X of dimension l (= split rank of G) on which G acts, called the
Bruhat -Tits building. General properties of these are summarized in [4] and [10].
There is an associated Tits system such that the cardinality of S is l + 1. If Γ ⊂ G
is a discrete, cocompact subgroup, then XΓ = Γ\X is a finite polyhedron, with a
polysimplicial structure, which is a simplicial structure if G is simple. By a theorem
of Borel and Harder [3], such Γ’s exist, at least if char(K) = 0. Assume that G is
simple. The cells X of various dimensions are in bijective correspondence with the
cosets G/BI , where

BI = BWIB, I ⊂ S

are the standard parahoric subgroups. Thus the cells of maximal dimension (cham-
bers) are in one orbit and in a bijection with G/B. The vertices are in general in
several orbits, corresponding to the maximal compact subgroups

Us = BS−s, s ∈ S.

If Γ acts without fixed points on X , then XΓ is a K(Γ, 1)-space. If that is so then

H i(Γ, V ) = H i(XΓ, Ṽ ).

Here, ϕ : Γ → Aut(V ) is a representation, and Ṽ is the corresponding sheaf on
the space XΓ. Assume V is a finite-dimensional C-vector space. If in addition,
G is simple over K and ϕ is a unitary representation, Garland showed that these
cohomology groups are 0 for all 0 < i < l at least if the cardinality of the residue
field of K is large enough, [5], [10].

For each I ⊂ S, let CI(XΓ, V ) be the space of all functions

f : G −→ V, such that f(γgb) = ρ(γ)f(g), γ ∈ Γ, b ∈ BI .

These are finite-dimensional C-vector spaces. In the special case where ρ = 1, this
is just the vector space spanned by the cells of type I in XΓ. The space of cochains
of dimension r is

Cr(XΓ, V ) =
⊕

#I=l−r

CI (XΓ, V )
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and these form a cochain complex. Assume again that ϕ is a unitary representation,
then we get metrics on these cochain groups in a canonical way, and therefore Lapla-
cians ∆i (see Garland’s paper). The spectra of these Laplacians are fundamental
invariants of the group Γ and its representation ϕ.

Each CI (XΓ, V ) is a right H(G, BI )-module under convolution. In particular,
taking I = ∅, we have a finite-dimensional representation ρΓ of the Iwahori-Hecke
algebraH(G, B) on the space of cells of maximal dimension C∅(XΓ, V ) = Cl(XΓ, V )
and thus a matrix L(W ′, S, ρΓ, u) associated to it, for any subset W ′ ⊂ W (for
instance the subgroups WI ). The coefficients of the powers of t in the characteristic
polynomial

det(t − L(W ′, S, ρΓ, u))

and in particular, detL(W ′, S, ρΓ, u) are also fundamental invariants of the discrete
subgroup Γ and its module V . Very little in known about these rational functions
of u, but in the case of graphs, the relation given by proposition 3.3 suggests that
their study may prove rewarding. For instance

∏

I⊂S

det L(WI , S, ρΓ, u)(−1)#I

generalizes the expression in that proposition.
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