Analysis of the Spread of Malaria Disease

Vincent Margiotta1 Lucas Oglesby2 Teresa Portone3 Brittany Stephenson4

1Department of Mathematics
University of New Orleans
New Orleans, LA

2Department of Mathematics
Louisiana State University
Baton Rouge, LA

3Department of Mathematics
University of Alabama
Tuscaloosa, AL

4Department of Mathematics
Mississippi State University
Starkville, MS

SMILE 2011
Malaria

- Mosquito-borne
- Prevalent in tropical and sub-tropical regions
- 225 million cases annually
Introduction

- Malaria
 - Mosquito-borne
 - Prevalent in tropical and sub-tropical regions
 - 225 million cases annually
Introduction

- Malaria
 - Mosquito-borne
 - Prevalent in tropical and sub-tropical regions
 - 225 million cases annually
Malaria

- Mosquito-borne
- Prevalent in tropical and sub-tropical regions
- 225 million cases annually
Introduction

- Model that captures the interactions between the populations
- Differential equations
- Tools to analyze these equations
Introduction

- Model that captures the interactions between the populations
- Differential equations
- Tools to analyze these equations
Introduction

- Model that captures the interactions between the populations
- Differential equations
- Tools to analyze these equations
Introduction

- **Disease free equilibrium point**
 - Differential equations equal zero
 - The infected population is zero
- **Disease endemic equilibrium point**
 - Differential equations equal zero
 - The infected population is greater than zero
Disease free equilibrium point
- Differential equations equal zero
- The infected population is zero

Disease endemic equilibrium point
- Differential equations equal zero
- The infected population is greater than zero
Introduction

- **Disease free equilibrium point**
 - Differential equations equal zero
 - The infected population is zero

- **Disease endemic equilibrium point**
 - Differential equations equal zero
 - The infected population is greater than zero
Introduction

- **Disease free equilibrium point**
 - Differential equations equal zero
 - The infected population is zero

- **Disease endemic equilibrium point**
 - Differential equations equal zero
 - The infected population is greater than zero
Introduction

- Disease free equilibrium point
 - Differential equations equal zero
 - The infected population is zero
- Disease endemic equilibrium point
 - Differential equations equal zero
 - The infected population is greater than zero
Introduction

- Disease free equilibrium point
 - Differential equations equal zero
 - The infected population is zero
- Disease endemic equilibrium point
 - Differential equations equal zero
 - The infected population is greater than zero
Introduction

- **Local stability**
 - Solutions near the equilibrium point tend to stay near the equilibrium point with time.

- **Global stability**
 - Solutions at any point on the graph will tend toward the equilibrium point with time.
Introduction

- **Local stability**
 - Solutions near the equilibrium point tend to stay near the equilibrium point with time.

- **Global stability**
 - Solutions at any point on the graph will tend toward the equilibrium point with time.
Introduction

- **Local stability**
 - Solutions near the equilibrium point tend to stay near the equilibrium point with time.

- **Global stability**
 - Solutions at any point on the graph will tend toward the equilibrium point with time.
Introduction

- **Local stability**
 - Solutions near the equilibrium point tend to stay near the equilibrium point with time.

- **Global stability**
 - Solutions at any point on the graph will tend toward the equilibrium point with time.
Basic reproduction number

The number of individuals that become infected from introducing one infected into a totally susceptible population.

If the number is greater than one...

then the disease persists

If the number is less than one...

then the disease will die out
Basic reproduction number
The number of individuals that become infected from introducing one infected into a totally susceptible population.

If the number is greater than one...
then the disease persists

If the number is less than one...
then the disease will die out
Basic reproduction number

- The number of individuals that become infected from introducing one infected into a totally susceptible population.

If the number is greater than one...

- then the disease persists

If the number is less than one...

- then the disease will die out
Introduction

- Basic reproduction number
 - The number of individuals that become infected from introducing one infected into a totally susceptible population.

- If the number is greater than one...
 - then the disease persists

- If the number is less than one...
 - then the disease will die out
Basic reproduction number
- The number of individuals that become infected from introducing one infected into a totally susceptible population.

If the number is greater than one...
- then the disease persists

If the number is less than one...
- then the disease will die out
Introduction

- **Basic reproduction number**
 - The number of individuals that become infected from introducing one infected into a totally susceptible population.
- **If the number is greater than one...**
 - then the disease persists
- **If the number is less than one...**
 - then the disease will die out
Mathematical Model of Malaria

\[
S'_h = \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h
\]

Table 1. Parameters for the malaria model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_h)</td>
<td>Birthrate of humans</td>
</tr>
<tr>
<td>(\lambda_m)</td>
<td>Birthrate of mosquitos</td>
</tr>
<tr>
<td>(\mu_h)</td>
<td>Natural death rate of humans</td>
</tr>
<tr>
<td>(\mu_m)</td>
<td>Natural death rate of mosquitos</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Human infection rate</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Mosquito infection rate</td>
</tr>
<tr>
<td>(\alpha_h)</td>
<td>Human recovery rate</td>
</tr>
</tbody>
</table>
Mathematical Model of Malaria

\[S_h' = \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h \]

Table 1. Parameters for the malaria model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_h)</td>
<td>Birthrate of humans</td>
</tr>
<tr>
<td>(\lambda_m)</td>
<td>Birthrate of mosquitos</td>
</tr>
<tr>
<td>(\mu_h)</td>
<td>Natural death rate of humans</td>
</tr>
<tr>
<td>(\mu_m)</td>
<td>Natural death rate of mosquitos</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Human infection rate</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Mosquito infection rate</td>
</tr>
<tr>
<td>(\alpha_h)</td>
<td>Human recovery rate</td>
</tr>
</tbody>
</table>
Mathematical Model of Malaria

\[S'_h = \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h \]

Table 1. Parameters for the malaria model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_h)</td>
<td>Birthrate of humans</td>
</tr>
<tr>
<td>(\lambda_m)</td>
<td>Birthrate of mosquitos</td>
</tr>
<tr>
<td>(\mu_h)</td>
<td>Natural death rate of humans</td>
</tr>
<tr>
<td>(\mu_m)</td>
<td>Natural death rate of mosquitos</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Human infection rate</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Mosquito infection rate</td>
</tr>
<tr>
<td>(\alpha_h)</td>
<td>Human recovery rate</td>
</tr>
</tbody>
</table>
Mathematical Model of Malaria

\[S_h' = \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h \]

Table 1. Parameters for the malaria model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_h)</td>
<td>Birthrate of humans</td>
</tr>
<tr>
<td>(\lambda_m)</td>
<td>Birthrate of mosquitos</td>
</tr>
<tr>
<td>(\mu_h)</td>
<td>Natural death rate of humans</td>
</tr>
<tr>
<td>(\mu_m)</td>
<td>Natural death rate of mosquitos</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Human infection rate</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Mosquito infection rate</td>
</tr>
<tr>
<td>(\alpha_h)</td>
<td>Human recovery rate</td>
</tr>
</tbody>
</table>
Mathematical Model of Malaria

\[
S'_h = \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h
\]

Table 1. Parameters for the malaria model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_h)</td>
<td>Birthrate of humans</td>
</tr>
<tr>
<td>(\lambda_m)</td>
<td>Birthrate of mosquitos</td>
</tr>
<tr>
<td>(\mu_h)</td>
<td>Natural death rate of humans</td>
</tr>
<tr>
<td>(\mu_m)</td>
<td>Natural death rate of mosquitos</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Human infection rate</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Mosquito infection rate</td>
</tr>
<tr>
<td>(\alpha_h)</td>
<td>Human recovery rate</td>
</tr>
</tbody>
</table>
Mathematical Model of Malaria

\[S'_h = \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h \]

Table 1. Parameters for the malaria model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_h)</td>
<td>Birthrate of humans</td>
</tr>
<tr>
<td>(\lambda_m)</td>
<td>Birthrate of mosquitoes</td>
</tr>
<tr>
<td>(\mu_h)</td>
<td>Natural death rate of humans</td>
</tr>
<tr>
<td>(\mu_m)</td>
<td>Natural death rate of mosquitoes</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Human infection rate</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Mosquito infection rate</td>
</tr>
<tr>
<td>(\alpha_h)</td>
<td>Human recovery rate</td>
</tr>
</tbody>
</table>
From Figure 1, we derive the following system of differential equations:

\[
\begin{align*}
S_h' &= \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h \\
I_h' &= \frac{\alpha S_h I_m}{N_h} - \alpha_h I_h - \mu_h I_h \\
S_m' &= \lambda_m N_m - \frac{\gamma S_m I_h}{N_h} - \mu_m S_m \\
I_m' &= \frac{\gamma S_m I_h}{N_h} - \mu_m I_m
\end{align*}
\]
Change of Variables

\[
\begin{align*}
 s_h &= \frac{S_h}{N_h}, \quad s_m = \frac{S_m}{N_m}, \quad i_h = \frac{I_h}{N_h}, \quad \text{and} \quad i_m = \frac{I_m}{N_m} \\
 s'_h &= \lambda_h (1 - s_h) + \alpha_h i_h - \alpha_1 s_h i_m \\
 i'_h &= \alpha_1 s_h i_m - \lambda_h i_h - \alpha_h i_h \\
 s'_m &= \lambda_m (1 - s_m) - \gamma s_m i_h \\
 i'_m &= \gamma s_m i_h - \lambda_m i_m
\end{align*}
\]
Change of Variables

- Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,
 - $s_h + i_h = 1$ and $s_m + i_m = 1$.
 - Thus, $s_h = 1 - i_h$ and $s_m = 1 - i_m$.

- By differentiating...
 - $s'_h = -i'_h$ and $s'_m = -i'_m$.
Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,

- $s_h + i_h = 1$ and $s_m + i_m = 1$.
- Thus, $s_h = 1 - i_h$ and $s_m = 1 - i_m$.

By differentiating...

- $s'_h = -i'_h$ and $s'_m = -i'_m$.
Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,

- $s_h + i_h = 1$ and $s_m + i_m = 1$.
- Thus, $s_h = 1 - i_h$ and $s_m = 1 - i_m$.

By differentiating...

- $s'_h = -i'_h$ and $s'_m = -i'_m$.
Change of Variables

Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,

- $s_h + i_h = 1$ and $s_m + i_m = 1$.
- Thus, $s_h = 1 - i_h$ and $s_m = 1 - i_m$.

By differentiating...

- $s'_h = -i'_h$ and $s'_m = -i'_m$.
Change of Variables

Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,
- $s_h + i_h = 1$ and $s_m + i_m = 1$.
- Thus, $s_h = 1 - i_h$ and $s_m = 1 - i_m$.

By differentiating...
- $s'_h = -i'_h$ and $s'_m = -i'_m$.
After substituting $1 - i_h$ for s_h, and $1 - i_m$ for s_m, the system becomes

\[
\begin{align*}
 i'_h &= \alpha_1 (1 - i_h) i_m - \lambda_h i_h - \alpha_h i_h \\
 i'_m &= \gamma (1 - i_m) i_h - \lambda_m i_m,
\end{align*}
\]

which is the system that we will analyze.
To find our equilibrium points we will set our systems equal to zero and solve for i_h and i_m.

\[
0 = \alpha_1(1 - i_h)i_m - \lambda_h i_h - \alpha_h i_h \\
0 = \gamma(1 - i_m)i_h - \lambda_m i_m,
\]

The **disease free equilibrium point**, the point at which no humans or mosquitos are infected, is $(i_h, i_m) = (0, 0)$.
To find our equilibrium points we will set our systems equal to zero and solve for i_h and i_m.

\[0 = \alpha_1 (1 - i_h) i_m - \lambda_h i_h - \alpha_h i_h \]
\[0 = \gamma (1 - i_m) i_h - \lambda_m i_m, \]

The **disease free equilibrium point**, the point at which no humans or mosquitos are infected, is $(i_h, i_m) = (0, 0)$.

Equilibrium Points
To find our equilibrium points we will set our systems equal to zero and solve for i_h and i_m.

$$0 = \alpha_1(1 - i_h)i_m - \lambda_h i_h - \alpha_h i_h$$
$$0 = \gamma(1 - i_m)i_h - \lambda_m i_m,$$

The **disease free equilibrium point**, the point at which no humans or mosquitos are infected, is $(i_h, i_m) = (0, 0)$.

Equilibrium Points
The **disease endemic equilibrium point**, denoted \((i^*_h, i^*_m)\), is the equilibrium point at which the disease persists. Then

\[
(i_h, i_m) \neq (0, 0).
\]

By setting \(i'_m = 0\) we see that

\[
0 = \gamma (1 - i_m) i_h - \lambda_m i_m.
\]

From this we can obtain a value of \(i_h\) in terms of \(i_m\).

\[
i_h = \frac{\lambda_m i_m}{\gamma (1 - i_m)}
\]
The disease endemic equilibrium point, denoted \((i^*_h, i^*_m)\), is the equilibrium point at which the disease persists. Then

\[(i_h, i_m) \neq (0, 0).\]

By setting \(i'_m = 0\) we see that

\[0 = \gamma (1 - i_m)i_h - \lambda_m i_m.\]

From this we can obtain a value of \(i_h\) in terms of \(i_m\).

\[i_h = \frac{\lambda_m i_m}{\gamma (1 - i_m)}\]
The **disease endemic equilibrium point**, denoted \((i^*_h, i^*_m)\), is the equilibrium point at which the disease persists. Then

\[
(i_h, i_m) \neq (0, 0).
\]

By setting \(i'_m = 0\) we see that

\[
0 = \gamma(1 - i_m)i_h - \lambda_m i_m.
\]

From this we can obtain a value of \(i_h\) in terms of \(i_m\).

\[
i_h = \frac{\lambda_m i_m}{\gamma(1 - i_m)}
\]
Disease Endemic Equilibrium Point

The **disease endemic equilibrium point**, denoted \((i^*_h, i^*_m)\), is the equilibrium point at which the disease persists. Then

\[
(i_h, i_m) \neq (0, 0).
\]

By setting \(i'_m = 0\) we see that

\[
0 = \gamma(1 - i_m)i_h - \lambda_m i_m.
\]

From this we can obtain a value of \(i_h\) in terms of \(i_m\).

\[
i_h = \frac{\lambda_m i_m}{\gamma(1 - i_m)}
\]
Substituting this quantity into the equation $i'_h = 0$ gives the following expression for i^*_m:

$$i^*_m = \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma}.$$

By plugging i^*_m into our previously obtained expression for i^*_h, we find the corresponding value of i^*_h to be

$$i^*_h = \frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}.$$

Thus we obtain the endemic equilibrium point (i^*_h, i^*_m).
Substituting this quantity into the equation \(i'_h = 0 \) gives the following expression for \(i^*_m \):

\[
i^*_m = \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma}.
\]

By plugging \(i^*_m \) into our previously obtained expression for \(i^*_h \), we find the corresponding value of \(i^*_h \) to be

\[
i^*_h = \frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}.
\]

Thus we obtain the endemic equilibrium point \((i^*_h, i^*_m)\).
Substituting this quantity into the equation $i'_h = 0$ gives the following expression for i^*_m:

$$i^*_m = \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma}.$$

By plugging i^*_m into our previously obtained expression for i_h, we find the corresponding value of i^*_h to be

$$i^*_h = \frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}.$$

Thus we obtain the endemic equilibrium point (i^*_h, i^*_m).
Calculating R_0

\[
(i^*_h, i^*_m) = \left(\frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}, \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma} \right)
\]

\[i^*_h, i^*_m > 0\]

Then

\[\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h > 0.\]

From this inequality we see that

\[R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)} > 1.\]

We conjecture that R_0 is the basic reproduction number.
Calculating R_0

$$(i_h^*, i_m^*) = \left(\frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}, \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma} \right)$$

$i_h^*, i_m^* > 0$

Then

$$\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h > 0.$$

From this inequality we see that

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)} > 1.$$

We conjecture that R_0 is the basic reproduction number.
Calculating R_0

$$(i_h^*, i_m^*) = \left(\frac{\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h}{\alpha_1\gamma + \alpha_h\gamma + \lambda_h\gamma}, \frac{\alpha_1\gamma - \alpha_h\lambda_m - \lambda_h\lambda_m}{\alpha_1\lambda_m + \alpha_1\gamma} \right)$$

$$i_h^*, i_m^* > 0$$

Then

$$\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h > 0.$$

From this inequality we see that

$$R_0 = \frac{\alpha_1\gamma}{\lambda_m(\alpha_h + \lambda_h)} > 1.$$

We conjecture that R_0 is the basic reproduction number.
Calculating R_0

$$(i_h^*, i_m^*) = \left(\frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}, \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma} \right)$$

$i_h^*, i_m^* > 0$

Then

$$\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h > 0.$$

From this inequality we see that

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)} > 1.$$

We conjecture that R_0 is the basic reproduction number.
Calculating R_0

\[(i_h^*, i_m^*) = \left(\frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}, \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma} \right)\]

\[i_h^*, i_m^* > 0\]

Then

\[\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h > 0.\]

From this inequality we see that

\[R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)} > 1.\]

We conjecture that R_0 is the basic reproduction number.
Calculating R_0

\[
(i^*_h, i^*_m) = \left(\frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}, \frac{\alpha_1 \gamma - \alpha_h \lambda_m - \lambda_h \lambda_m}{\alpha_1 \lambda_m + \alpha_1 \gamma} \right)
\]

\[i^*_h, i^*_m > 0\]

Then

\[\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h > 0.\]

From this inequality we see that

\[R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)} > 1.\]

We conjecture that R_0 is the basic reproduction number.
Classification of Systems of Differential Equations

Before moving into asymptotic stability, we will need to consider systems of first order linear differential equations of the form

\[\begin{align*}
 x' &= ax + by \\
 y' &= cx + dy
\end{align*} \]

This can be expressed as

\[x' = Ax, \]

where

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

and

\[x = \begin{bmatrix} x \\ y \end{bmatrix}. \]
Before moving into asymptotic stability, we will need to consider systems of first order linear differential equations of the form

\[x' = ax + by \]
\[y' = cx + dy \]

This can be expressed as

\[x' = Ax, \]

where

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

and

\[x = \begin{bmatrix} x \\ y \end{bmatrix}. \]
A nonzero vector \(v \) is an \textbf{eigenvector} of \(A \) and the constant \(\lambda \) is called an \textbf{eigenvalue} of \(A \) if
\[
A v = \lambda v
\]
for the system \(x' = Ax \).

Theorem

Suppose \(A \) has a pair of real eigenvalues \(\lambda_1 \neq \lambda_2 \) and associated eigenvectors \(v_1 \) and \(v_2 \) then the general solution of the linear system \(x' = Ax \) is given by

\[
x(t) = \alpha e^{\lambda_1 t} v_1 + \beta e^{\lambda_2 t} v_2
\]

where \(\alpha, \beta \in \mathbb{R} \).

Then when \(\lambda_1, \lambda_2 < 0 \) the solution will stabilize.
A nonzero vector v is an **eigenvector** of A and the constant λ is called an **eigenvalue** of A if

$$Av = \lambda v$$

for the system $x' = Ax$.

Theorem

Suppose A has a pair of real eigenvalues $\lambda_1 \neq \lambda_2$ and associated eigenvectors v_1 and v_2 then the general solution of the linear system $x' = Ax$ is given by

$$x(t) = \alpha e^{\lambda_1 t} v_1 + \beta e^{\lambda_2 t} v_2$$

where $\alpha, \beta \in \mathbb{R}$.

Then when $\lambda_1, \lambda_2 < 0$ the solution will stabilize.
A nonzero vector v is an **eigenvector** of A and the constant λ is called an **eigenvalue** of A if

$$Av = \lambda v$$

for the system $x' = Ax$.

Theorem

Suppose A has a pair of real eigenvalues $\lambda_1 \neq \lambda_2$ and associated eigenvectors v_1 and v_2 then the general solution of the linear system $x' = Ax$ is given by

$$x(t) = \alpha e^{\lambda_1 t} v_1 + \beta e^{\lambda_2 t} v_2$$

where $\alpha, \beta \in \mathbb{R}$.

Then when $\lambda_1, \lambda_2 < 0$ the solution will stabilize.
To find the eigenvalues of A solve the characteristic equation of A for λ:

$$\det(A - \lambda I) = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0,$$

$$\lambda^2 - (a + d)\lambda + (ad - bc) = 0.$$

Note that tr is the trace of the matrix, which is defined as the sum of the entries along main diagonal. Then

$$\lambda^2 - \text{tr}(A)\lambda + \det(A) = 0,$$
To find the eigenvalues of A solve the characteristic equation of A for λ:

$$\det(A - \lambda I) = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0,$$

$$\lambda^2 - (a + d)\lambda + (ad - bc) = 0.$$

Note that tr is the trace of the matrix, which is defined as the sum of the entries along main diagonal. Then

$$\lambda^2 - \text{tr}(A)\lambda + \det(A) = 0,$$
To find the eigenvalues of A solve the characteristic equation of A for λ:

$$\det(A - \lambda I) = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0,$$

$$\lambda^2 - (a + d)\lambda + (ad - bc) = 0.$$

Note that \text{tr} is the trace of the matrix, which is defined as the sum of the entries along main diagonal. Then

$$\lambda^2 - \text{tr}(A)\lambda + \det(A) = 0,$$
To find the eigenvalues of A solve the characteristic equation of A for λ:

$$\det(A - \lambda I) = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0,$$

$$\lambda^2 - (a + d)\lambda + (ad - bc) = 0.$$

Note that tr is the trace of the matrix, which is defined as the sum of the entries along main diagonal. Then

$$\lambda^2 - \text{tr}(A)\lambda + \det(A) = 0,$$
Using the quadratic formula, the roots of our characteristic equation are given by

\[
\lambda_1 = \frac{\text{tr}(A) + \sqrt{\text{tr}(A)^2 - 4\det(A)}}{2}
\]

and

\[
\lambda_2 = \frac{\text{tr}(A) - \sqrt{\text{tr}(A)^2 - 4\det(A)}}{2}.
\]

From this, we can see that

\[
\lambda_1 + \lambda_2 = \text{tr}(A)
\]

and

\[
\lambda_1 \lambda_2 = \det(A).
\]
Using the quadratic formula, the roots of our characteristic equation are given by

\[\lambda_1 = \frac{\text{tr}(A) + \sqrt{\text{tr}(A)^2 - 4\det(A)}}{2} \]

and

\[\lambda_2 = \frac{\text{tr}(A) - \sqrt{\text{tr}(A)^2 - 4\det(A)}}{2}. \]

From this, we can see that

\[\lambda_1 + \lambda_2 = \text{tr}(A) \]

and

\[\lambda_1 \lambda_2 = \det(A). \]
When

$$\text{tr}(A)^2 - 4\det(A) > 0,$$

Stable Case:

$$\text{tr}(A) < 0 \text{ and } \det(A) > 0 \implies \lambda_1, \lambda_2 < 0$$

Unstable Case:

In any other case, the equilibrium point will be unstable.
Local Asymptotic Stability

Theorem

i.) If $R_0 < 1$, then the disease free equilibrium point is locally asymptotically stable.

ii.) If $R_0 > 1$, then the disease free equilibrium point is unstable and the disease endemic equilibrium point is locally asymptotically stable.
Local Asymptotic Stability

We will analyze our system using Jacobian matrices.

\[J(i_h, i_m) = \begin{bmatrix} \frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\ \frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m} \end{bmatrix} \]

\begin{align*}
\frac{\partial i'_h}{\partial i_h} &= -\lambda_h - \alpha_1 i_m - \alpha_h \\
\frac{\partial i'_h}{\partial i_m} &= \alpha_1 (1 - i_h) \\
\frac{\partial i'_m}{\partial i_h} &= \gamma (1 - i_m) \\
\frac{\partial i'_m}{\partial i_m} &= -\lambda_m - \gamma i_h \\
\end{align*}

Our final Jacobian matrix is

\[J(i_h, i_m) = \begin{bmatrix} -\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1 (1 - i_h) \\ \gamma (1 - i_m) & -\lambda_m - \gamma i_h \end{bmatrix} \]
Local Asymptotic Stability

We will analyze our system using Jacobian matrices.

\[
J(i_h, i_m) = \begin{bmatrix}
\frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\
\frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m}
\end{bmatrix}
\]

\[
\frac{\partial i'_h}{\partial i_h} = -\lambda_h - \alpha_1 i_m - \alpha_h \\
\frac{\partial i'_h}{\partial i_m} = \alpha_1 (1 - i_h) \\
\frac{\partial i'_m}{\partial i_h} = \gamma (1 - i_m) \\
\frac{\partial i'_m}{\partial i_m} = -\lambda_m - \gamma i_h
\]

Our final Jacobian matrix is

\[
J(i_h, i_m) = \begin{bmatrix}
-\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1 (1 - i_h) \\
\gamma (1 - i_m) & -\lambda_m - \gamma i_h
\end{bmatrix}
\]
Local Asymptotic Stability

We will analyze our system using Jacobian matrices.

\[J(i_h, i_m) = \begin{bmatrix} \frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\ \frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m} \end{bmatrix} \]

\[
\begin{align*}
\frac{\partial i'_h}{\partial i_h} &= -\lambda_h - \alpha_1 i_m - \alpha_h \\
\frac{\partial i'_h}{\partial i_m} &= \alpha_1 (1 - i_h) \\
\frac{\partial i'_m}{\partial i_h} &= \gamma (1 - i_m) \\
\frac{\partial i'_m}{\partial i_m} &= -\lambda_m - \gamma i_h
\end{align*}
\]

Our final Jacobian matrix is

\[
J(i_h, i_m) = \begin{bmatrix} -\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1 (1 - i_h) \\ \gamma (1 - i_m) & -\lambda_m - \gamma i_h \end{bmatrix}.
\]
Local Asymptotic Stability

We will analyze our system using Jacobian matrices.

\[J(i_h, i_m) = \begin{bmatrix} \frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\ \frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m} \end{bmatrix} \]

\[\frac{\partial i'_h}{\partial i_h} = -\lambda_h - \alpha_1 i_m - \alpha_h \]
\[\frac{\partial i'_h}{\partial i_m} = \alpha_1 (1 - i_h) \]
\[\frac{\partial i'_m}{\partial i_h} = \gamma (1 - i_m) \]
\[\frac{\partial i'_m}{\partial i_m} = -\lambda_m - \gamma i_h \]

Our final Jacobian matrix is

\[J(i_h, i_m) = \begin{bmatrix} -\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1 (1 - i_h) \\ \gamma (1 - i_m) & -\lambda_m - \gamma i_h \end{bmatrix}. \]
Local Asymptotic Stability

Evaluating at our disease-free equilibrium point \((0, 0)\), we obtain the Jacobian matrix, trace and determinant:

\[
J(0, 0) = \begin{bmatrix}
-\lambda_h - \alpha_h & \alpha_1 \\
\gamma & -\lambda_m
\end{bmatrix}
\]

\[
\det(J(0, 0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma
\]

\[
\text{tr}(J(0, 0)) = -(\lambda_m + \lambda_h + \alpha_h)
\]
Local Asymptotic Stability

\[
\begin{align*}
\det(J(0, 0)) &= \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma \\
\text{tr}(J(0, 0)) &= -(\lambda_m + \lambda_h + \alpha_h)
\end{align*}
\]

\[
\text{tr}(J(0, 0)) < 0
\]

Recall

\[
R_0 = \frac{\alpha_1 \gamma}{\lambda_m(\alpha_h + \lambda_h)}.
\]

\[R_0 < 1 \iff \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma\]

Then (0,0) is locally asymptotically stable when \(R_0 < 1 \).

\[R_0 > 1 \iff \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma\]

Then (0,0) is unstable when \(R_0 > 1 \).
Local Asymptotic Stability

\[
\begin{align*}
\det(J(0, 0)) &= \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma \\
\tr(J(0, 0)) &= -(\lambda_m + \lambda_h + \alpha_h)
\end{align*}
\]

\[
\tr(J(0, 0)) < 0
\]

Recall

\[
R_0 = \frac{\alpha_1 \gamma}{\lambda_m(\alpha_h + \lambda_h)}.
\]

\[
R_0 < 1 \implies \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((0, 0)\) is locally asymptotically stable when \(R_0 < 1\).

\[
R_0 > 1 \implies \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((0, 0)\) is unstable when \(R_0 > 1\).
Local Asymptotic Stability

\[
\begin{align*}
\det(J(0, 0)) &= \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma \\
\text{tr}(J(0, 0)) &= -(\lambda_m + \lambda_h + \alpha_h)
\end{align*}
\]

\[
\text{tr}(J(0, 0)) < 0
\]

Recall

\[
R_0 = \frac{\alpha_1 \gamma}{\lambda_m(\alpha_h + \lambda_h)}.
\]

\[
R_0 < 1 \implies \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((0,0)\) is locally asymptotically stable when \(R_0 < 1\).

\[
R_0 > 1 \implies \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((0,0)\) is unstable when \(R_0 > 1\).
Local Asymptotic Stability

\[
\begin{align*}
\det(J(0,0)) &= \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma \\
\text{tr}(J(0,0)) &= -(\lambda_m + \lambda_h + \alpha_h)
\end{align*}
\]

\[
\text{tr}(J(0,0)) < 0
\]

Recall

\[
R_0 = \frac{\alpha_1 \gamma}{\lambda_m(\alpha_h + \lambda_h)}.
\]

\[
R_0 < 1 \iff \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((0,0)\) is locally asymptotically stable when \(R_0 < 1\).

\[
R_0 > 1 \iff \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((0,0)\) is unstable when \(R_0 > 1\).
Local Asymptotic Stability

\[
\begin{align*}
\det(J(0, 0)) &= \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma \\
\text{tr}(J(0, 0)) &= -(\lambda_m + \lambda_h + \alpha_h)
\end{align*}
\]

\[
\text{tr}(J(0, 0)) < 0
\]

Recall

\[
R_0 = \frac{\alpha_1 \gamma}{\lambda_m(\alpha_h + \lambda_h)}.
\]

\[
R_0 < 1 \implies \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((0,0)\) is locally asymptotically stable when \(R_0 < 1\).

\[
R_0 > 1 \implies \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((0,0)\) is unstable when \(R_0 > 1\).
Local Asymptotic Stability

\[
\begin{align*}
\det(J(0,0)) &= \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma \\
\text{tr}(J(0,0)) &= -(\lambda_m + \lambda_h + \alpha_h)
\end{align*}
\]

\[
\text{tr}(J(0,0)) < 0
\]

Recall

\[
R_0 = \frac{\alpha_1 \gamma}{\lambda_m(\alpha_h + \lambda_h)}.
\]

\[
R_0 < 1 \iff \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((0,0)\) is locally asymptotically stable when \(R_0 < 1\).

\[
R_0 > 1 \iff \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((0,0)\) is unstable when \(R_0 > 1\).
Local Asymptotic Stability

We now evaluate the Jacobian at the disease endemic equilibrium point \((i^*_h, i^*_m)\).

\[
J(i^*_h, i^*_m) = \begin{bmatrix}
-\gamma(\alpha_1 + \lambda_h + \alpha_h) & \alpha_1(\alpha_h \gamma + \gamma \lambda_h + \alpha_h \lambda_m + \lambda_m \lambda_h) \\
\lambda_m + \gamma & \gamma(\alpha_1 + \alpha_h + \lambda_h) \\
\gamma \lambda_m (\alpha_1 + \alpha_h + \lambda_h) & -\alpha_1(\lambda_m + \gamma) \\
\alpha_1(\lambda_m + \gamma) & \alpha_1 + \alpha_h + \lambda_h
\end{bmatrix}
\]

\[
det(J(i^*_h, i^*_m)) = \gamma \alpha_1 - \lambda_m(\alpha_h + \lambda_h)
\]

\[
tr(J(i^*_h, i^*_m)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)
\]
Local Asymptotic Stability

We now evaluate the Jacobian at the disease endemic equilibrium point \((i^*_h, i^*_m)\).

\[
J(i^*_h, i^*_m) = \begin{bmatrix}
-\gamma(\alpha_1 + \lambda_h + \alpha_h) & \alpha_1(\alpha_h \gamma + \gamma \lambda_h + \alpha_h \lambda_m + \lambda_m \lambda_h) \\
\lambda_m + \gamma & \gamma(\alpha_1 + \alpha_h + \lambda_h) \\
\gamma \lambda_m (\alpha_1 + \alpha_h + \lambda_h) & -\alpha_1(\lambda_m + \gamma) \\
\alpha_1(\lambda_m + \gamma) & \alpha_1 + \alpha_h + \lambda_h
\end{bmatrix}
\]

\[
det(J(i^*_h, i^*_m)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)
\]

\[
tr(J(i^*_h, i^*_m)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)
\]
Local Asymptotic Stability

\[
\text{det}(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) = - \left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h} \right)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) < 0
\]

\[
R_0 > 1 \implies \lambda_m (\lambda_h + \alpha_h) < \alpha_1 \gamma
\]
Then \((i_h^*, i_m^*)\) is locally asymptotically stable when \(R_0 > 1\).

\[
R_0 < 1 \implies \lambda_m (\lambda_h + \alpha_h) > \alpha_1 \gamma
\]
Then \((i_h^*, i_m^*)\) is unstable when \(R_0 < 1\).
Local Asymptotic Stability

\[
\det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) = -\left(\frac{\gamma (\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1 (\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h} \right)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) < 0
\]

\[
R_0 > 1 \implies \lambda_m (\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((i_h^*, i_m^*)\) is locally asymptotically stable when \(R_0 > 1\).

\[
R_0 < 1 \implies \lambda_m (\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((i_h^*, i_m^*)\) is unstable when \(R_0 < 1\).
Local Asymptotic Stability

\[
\det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) = -\left(\frac{\gamma (\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1 (\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h} \right)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) < 0
\]

\[
R_0 > 1 \implies \lambda_m (\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((i_h^*, i_m^*)\) is locally asymptotically stable when \(R_0 > 1\).

\[
R_0 < 1 \implies \lambda_m (\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((i_h^*, i_m^*)\) is unstable when \(R_0 < 1\).
Local Asymptotic Stability

\[
\det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) = - \left(\frac{\gamma (\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1 (\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h} \right)
\]

\[
\text{tr}(J(i_h^*, i_m^*)) < 0
\]

\[
R_0 > 1 \implies \lambda_m (\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((i_h^*, i_m^*)\) is locally asymptotically stable when \(R_0 > 1\).

\[
R_0 < 1 \implies \lambda_m (\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((i_h^*, i_m^*)\) is unstable when \(R_0 < 1\).
Local Asymptotic Stability

\[\text{det}(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h) \]

\[\text{tr}(J(i_h^*, i_m^*)) = - \left(\frac{\gamma (\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1 (\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h} \right) \]

\[\text{tr}(J(i_h^*, i_m^*)) < 0 \]

\[R_0 > 1 \implies \lambda_m (\lambda_h + \alpha_h) < \alpha_1 \gamma \]

Then \((i_h^*, i_m^*)\) is locally asymptotically stable when \(R_0 > 1\).

\[R_0 < 1 \implies \lambda_m (\lambda_h + \alpha_h) > \alpha_1 \gamma \]

Then \((i_h^*, i_m^*)\) is unstable when \(R_0 < 1\).
Local Asymptotic Stability

\[
\det(J(i^*_h, i^*_m)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)
\]

\[
\text{tr}(J(i^*_h, i^*_m)) = - \left(\frac{\gamma (\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1 (\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h} \right)
\]

\[
\text{tr}(J(i^*_h, i^*_m)) < 0
\]

\[
R_0 > 1 \implies \lambda_m (\lambda_h + \alpha_h) < \alpha_1 \gamma
\]

Then \((i^*_h, i^*_m)\) is locally asymptotically stable when \(R_0 > 1\).

\[
R_0 < 1 \implies \lambda_m (\lambda_h + \alpha_h) > \alpha_1 \gamma
\]

Then \((i^*_h, i^*_m)\) is unstable when \(R_0 < 1\).
Global Asymptotic Stability

- If all solutions of a system converge to the equilibrium point, then that equilibrium point is considered globally asymptotically stable.
- We will study the global asymptotic stability of our disease free equilibrium point, \((i_h, i_m) = (0, 0)\), using Lyapunov’s second method for stability.
Global Asymptotic Stability

- If all solutions of a system converge to the equilibrium point, then that equilibrium point is considered globally asymptotically stable.
- We will study the global asymptotic stability of our disease free equilibrium point, \((i_h, i_m) = (0, 0)\), using Lyapunov’s second method for stability.
Global Asymptotic Stability

Definition

Lyapunov Stability:
Let x^* be an equilibrium point for $x' = F(x)$, where $F(x)$ is a system of differential equations. Let $L : U \rightarrow \mathbb{R}$ be a continuous function defined on an open set U containing x^*. Suppose further that

1. $L(x^*) = 0$ and $L(x) > 0$ if $x \neq x^*$
2. $\frac{dL}{dt} < 0$ in $U \setminus x^*$

then x^* is globally asymptotically stable.
Global Asymptotic Stability

Theorem

If $R_0 < 1$, *then* $(0, 0)$ *is globally asymptotically stable.*

Proof:

First, let

$$
\Omega = \{(i_h, i_m) \in \mathbb{R}_+^2 : 0 \leq i_h \leq 1, 0 \leq i_m \leq 1\}
$$

be all possible values of i_h and i_m.

Define the Lyapunov function $L : \Omega \to \mathbb{R}$ by

$$
L(i_h, i_m) = \gamma i_h + (\lambda_h + \alpha_h) i_m
$$
Global Asymptotic Stability

Theorem

If $R_0 < 1$, then $(0, 0)$ is globally asymptotically stable.

Proof:

First, let

$$
\Omega = \{(i_h, i_m) \in \mathbb{R}_+^2 : 0 \leq i_h \leq 1, 0 \leq i_m \leq 1\}
$$

be all possible values of i_h and i_m.

Define the Lyapunov function $L : \Omega \rightarrow \mathbb{R}$ by

$$
L(i_h, i_m) = \gamma i_h + (\lambda_h + \alpha_h) i_m
$$
Global Asymptotic Stability

Theorem

If $R_0 < 1$, then $(0, 0)$ is globally asymptotically stable.

Proof:
First, let

$$\Omega = \{(i_h, i_m) \in \mathbb{R}_+^2 : 0 \leq i_h \leq 1, 0 \leq i_m \leq 1\}$$

be all possible values of i_h and i_m.

Define the Lyapunov function $L : \Omega \to \mathbb{R}$ by

$$L(i_h, i_m) = \gamma i_h + (\lambda_h + \alpha_h)i_m$$
Global Asymptotic Stability

We can see that \(L(i_h, i_m) = 0 \) at our disease-free equilibrium point \((0, 0)\), and for all \((i_h, i_m) \in \Omega \setminus (0, 0)\), we see that \(L(i_h, i_m) > 0 \), then condition (1) of Lyapunov stability is satisfied.

Taking the total derivative of \(L(i_h, i_m) \), we see

\[
\frac{dL}{dt} = \frac{\partial L}{\partial i_h} \frac{di_h}{dt} + \frac{\partial L}{\partial i_m} \frac{di_m}{dt}
\]
Global Asymptotic Stability

We can see that $L(i_h, i_m) = 0$ at our disease-free equilibrium point $(0, 0)$, and for all $(i_h, i_m) \in \Omega \setminus (0, 0)$, we see that $L(i_h, i_m) > 0$, then condition (1) of Lyapunov stability is satisfied.

Taking the total derivative of $L(i_h, i_m)$, we see

$$\frac{dL}{dt} = \frac{\partial L}{\partial i_h} \frac{di_h}{dt} + \frac{\partial L}{\partial i_m} \frac{di_m}{dt}$$
Global Asymptotic Stability

Taking the partial derivatives of L and substituting in i'_h and i'_m we find

$$\frac{dL}{dt} = \gamma [(\alpha_1 - i_h) - (\lambda_h + \alpha_h)i_h] - (\lambda_h + \alpha_h)(-\lambda_m i_m + \gamma i_h (1 - i_m))$$

$$= -[\lambda_m (\lambda_h + \alpha_h) - \alpha_1 \gamma] i_m - \alpha_1 \gamma i_h i_m - \gamma (\lambda_h + \alpha_h) i_h i_m.$$

Since $R_0 < 1$ implies that $\lambda_m (\alpha_h + \lambda_h) > \alpha_1 \gamma$, it is evident that that

$$\frac{dL}{dt} < 0$$

in $\Omega \setminus (0,0)$, so we may conclude that $(0,0)$ is globally asymptotically stable when $R_0 < 1$.
Global Asymptotic Stability

Taking the partial derivatives of L and substituting in i'_h and i'_m we find

\[
\frac{dL}{dt} = \gamma \left[(\alpha_1 - i_h) - (\lambda_h + \alpha_h)i_h \right] - (\lambda_h + \alpha_h)(-\lambda_m i_m + \gamma i_h(1 - i_m))
\]

\[
= -[\lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma]i_m - \alpha_1 \gamma i_h i_m - \gamma(\lambda_h + \alpha_h)i_h i_m.
\]

Since $R_0 < 1$ implies that $\lambda_m(\alpha_h + \lambda_h) > \alpha_1 \gamma$, it is evident that that $\frac{dL}{dt} < 0$ in $\Omega \setminus (0, 0)$, so we may conclude that $(0, 0)$ is globally asymptotically stable when $R_0 < 1$.
Practical Application of Theoretical Findings

Parameter Values

\[R_0 = 0.6667 \]

<table>
<thead>
<tr>
<th>Parameter Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_h)</td>
</tr>
<tr>
<td>(\lambda_m)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
</tr>
<tr>
<td>(\gamma)</td>
</tr>
<tr>
<td>(\alpha_h)</td>
</tr>
</tbody>
</table>
Practical Application of Theoretical Findings

Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_h</td>
<td>0.4</td>
</tr>
<tr>
<td>λ_m</td>
<td>0.5</td>
</tr>
<tr>
<td>α_1</td>
<td>0.8</td>
</tr>
<tr>
<td>γ</td>
<td>0.8</td>
</tr>
<tr>
<td>α_h</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$R_0 = 1.8286$
Thank you!