Analysis of the Spread of Malaria Disease

Vincent Margiotta¹ Lucas Oglesby² Teresa Portone³ Brittany Stephenson⁴

> ¹Department of Mathematics University of New Orleans New Orleans, LA

²Department of Mathematics Louisiana State University Baton Rouge, LA

³Department of Mathematics University of Alabama Tuscaloosa, AL

⁴Department of Mathematics Mississippi State University Starkville, MS

SMILE 2011

- Mosquito-borne
- Prevalent in tropical and sub-tropical regions
- 225 million cases annually

Mosquito-borne

- Prevalent in tropical and sub-tropical regions
- 225 million cases annually

- Mosquito-borne
- Prevalent in tropical and sub-tropical regions
- 225 million cases annually

- Mosquito-borne
- Prevalent in tropical and sub-tropical regions
- 225 million cases annually

• Model that captures the interactions between the populations

- Differential equations
- Tools to analyze these equations

- Model that captures the interactions between the populations
- Differential equations
- Tools to analyze these equations

- Model that captures the interactions between the populations
- Differential equations
- Tools to analyze these equations

• Disease free equilibrium point

- Differential equations equal zero
- The infected population is zero

• Disease endemic equilibrium point

- Differential equations equal zero
- The infected population is greater than zero

• Disease free equilibrium point

- Differential equations equal zero
- The infected population is zero
- Disease endemic equilibrium point
 - Differential equations equal zero
 - The infected population is greater than zero

- Disease free equilibrium point
 - Differential equations equal zero
 - The infected population is zero
- Disease endemic equilibrium point
 - Differential equations equal zero
 - The infected population is greater than zero

- Disease free equilibrium point
 - Differential equations equal zero
 - The infected population is zero

• Disease endemic equilibrium point

- Differential equations equal zero
- The infected population is greater than zero

- Disease free equilibrium point
 - Differential equations equal zero
 - The infected population is zero
- Disease endemic equilibrium point
 - Differential equations equal zero
 - The infected population is greater than zero

- Disease free equilibrium point
 - Differential equations equal zero
 - The infected population is zero
- Disease endemic equilibrium point
 - Differential equations equal zero
 - The infected population is greater than zero

• Local stability

• Solutions near the equilibrium point tend to stay near the equilibrium point with time.

Global stability

 Solutions at any point on the graph will tend toward the equilibrium point with time.

- Local stability
 - Solutions near the equilibrium point tend to stay near the equilibrium point with time.
- Global stability
 - Solutions at any point on the graph will tend toward the equilibrium point with time.

- Local stability
 - Solutions near the equilibrium point tend to stay near the equilibrium point with time.
- Global stability
 - Solutions at any point on the graph will tend toward the equilibrium point with time.

- Local stability
 - Solutions near the equilibrium point tend to stay near the equilibrium point with time.
- Global stability
 - Solutions at any point on the graph will tend toward the equilibrium point with time.

• Basic reproduction number

- The number of individuals that become infected from introducing one infected into a totally susceptible population.
- If the number is greater than one...
 - then the disease persists
- If the number is less than one...
 - then the disease will die out

• Basic reproduction number

- The number of individuals that become infected from introducing one infected into a totally susceptible population.
- If the number is greater than one...
 - then the disease persists
- If the number is less than one...
 - then the disease will die out

- Basic reproduction number
 - The number of individuals that become infected from introducing one infected into a totally susceptible population.
- If the number is greater than one...
 - then the disease persists
- If the number is less than one...
 - then the disease will die out

- Basic reproduction number
 - The number of individuals that become infected from introducing one infected into a totally susceptible population.
- If the number is greater than one...
 - then the disease persists
- If the number is less than one...

• then the disease will die out

- Basic reproduction number
 - The number of individuals that become infected from introducing one infected into a totally susceptible population.
- If the number is greater than one...
 - then the disease persists
- If the number is less than one...
 - then the disease will die out

- Basic reproduction number
 - The number of individuals that become infected from introducing one infected into a totally susceptible population.
- If the number is greater than one...
 - then the disease persists
- If the number is less than one...
 - then the disease will die out

$$S'_{h} = \lambda_{h} N_{h} - \frac{\alpha S_{h} I_{m}}{N_{h}} - \mu_{h} S_{h} + \alpha_{h} I_{h}$$
Table 1. Parameters for the malaria model

Table 1. Parameters for the malaria model.	
λ_h	Birthrate of humans
λ_m	Birthrate of mosquitos
μ_h	Natural death rate of humans
μ_m	Natural death rate of mosquitos
α	Human infection rate
γ	Mosquito infection rate
α_h	Human recovery rate

$$S_{h}' = \lambda_{h} N_{h} - \frac{\alpha S_{h} I_{m}}{N_{h}} - \mu_{h} S_{h} + \alpha_{h} I_{h}$$

Table 1. Parameters for the malaria model.		
λ_h	Birthrate of humans	
λ_m	Birthrate of mosquitos	
μ_h	Natural death rate of humans	
μ_m	Natural death rate of mosquitos	
α	Human infection rate	
γ	Mosquito infection rate	
α_h	Human recovery rate	

$$S'_{h} = \lambda_{h} N_{h} - \frac{\alpha S_{h} I_{m}}{N_{h}} - \mu_{h} S_{h} + \alpha_{h} I_{h}$$

Table 1. Parameters for the malaria model.		
λ_h	Birthrate of humans	
λ_m	Birthrate of mosquitos	
μ_h	Natural death rate of humans	
μ_m	Natural death rate of mosquitos	
α	Human infection rate	
γ	Mosquito infection rate	
α_h	Human recovery rate	

$$S'_{h} = \lambda_{h}N_{h} - \frac{\alpha S_{h}I_{m}}{N_{h}} - \mu_{h}S_{h} + \alpha_{h}I_{h}$$
Table 1. Parameters for the malaria model.

~h	Diffinate of namans
λ_m	Birthrate of mosquitos
μ_h	Natural death rate of humans
μ_m	Natural death rate of mosquitos
α	Human infection rate
γ	Mosquito infection rate
α_h	Human recovery rate

 $S_h' = \lambda_h N_h - \frac{\alpha S_h I_m}{N_h} - \mu_h S_h + \alpha_h I_h$ Table 1. Parameters for the malaria model. λ_h Birthrate of humans

λ_m	Birthrate of mosquitos
μ_h	Natural death rate of humans
μ_m	Natural death rate of mosquitos
α	Human infection rate
γ	Mosquito infection rate
,	

α_h Human recovery rate

$$S'_{h} = \lambda_{h}N_{h} - \frac{\alpha S_{h}I_{m}}{N_{h}} - \mu_{h}S_{h} + \alpha_{h}I_{h}$$
Table 1. Parameters for the malaria model.

λ_h	Birthrate of humans
λ_m	Birthrate of mosquitos
μ_h	Natural death rate of humans
μ_m	Natural death rate of mosquitos
α	Human infection rate
γ	Mosquito infection rate
α_h	Human recovery rate

From Figure 1, we derive the following system of differential equations:

$$S'_{h} = \lambda_{h}N_{h} - \frac{\alpha S_{h}I_{m}}{N_{h}} - \mu_{h}S_{h} + \alpha_{h}I_{h}$$
$$I'_{h} = \frac{\alpha S_{h}I_{m}}{N_{h}} - \alpha_{h}I_{h} - \mu_{h}I_{h}$$
$$S'_{m} = \lambda_{m}N_{m} - \frac{\gamma S_{m}I_{h}}{N_{h}} - \mu_{m}S_{m}$$
$$I'_{m} = \frac{\gamma S_{m}I_{h}}{N_{h}} - \mu_{m}I_{m}$$

Change of Variables

$$s_h = \frac{S_h}{N_h}, \ s_m = \frac{S_m}{N_m}, \ i_h = \frac{I_h}{N_h}, \ \text{and} \ \ i_m = \frac{I_m}{N_m}$$

$$\begin{aligned} s'_{h} &= \lambda_{h}(1-s_{h}) + \alpha_{h}i_{h} - \alpha_{1}s_{h}i_{m} \\ i'_{h} &= \alpha_{1}s_{h}i_{m} - \lambda_{h}i_{h} - \alpha_{h}i_{h} \\ s'_{m} &= \lambda_{m}(1-s_{m}) - \gamma s_{m}i_{h} \\ i'_{m} &= \gamma s_{m}i_{h} - \lambda_{m}i_{m} \end{aligned}$$

• Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,

- $s_h + i_h = 1$ and $s_m + i_m = 1$.
- Thus, $s_h = 1 i_h$ and $s_m = 1 i_m$.
- By differentiating...

• $s'_h = -i'_h$ and $s'_m = -i'_m$.

- Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,
 - $s_h + i_h = 1$ and $s_m + i_m = 1$.
 - Thus, $s_h = 1 i_h$ and $s_m = 1 i_m$.
- By differentiating...

• $s'_h = -i'_h$ and $s'_m = -i'_m$.

• Since
$$S_h + I_h = N_h$$
 and $S_m + I_m = N_m$,

•
$$s_h + i_h = 1$$
 and $s_m + i_m = 1$.

• Thus,
$$s_h = 1 - i_h$$
 and $s_m = 1 - i_m$.

• By differentiating...

- Since $S_h + I_h = N_h$ and $S_m + I_m = N_m$,
 - $s_h + i_h = 1$ and $s_m + i_m = 1$.
 - Thus, $s_h = 1 i_h$ and $s_m = 1 i_m$.
- By differentiating...
 - $s'_h = -i'_h$ and $s'_m = -i'_m$.

• Since
$$S_h + I_h = N_h$$
 and $S_m + I_m = N_m$,

•
$$s_h + i_h = 1$$
 and $s_m + i_m = 1$.

• Thus,
$$s_h = 1 - i_h$$
 and $s_m = 1 - i_m$.

• By differentiating...

•
$$s'_h = -i'_h$$
 and $s'_m = -i'_m$

After substituting $1 - i_h$ for s_h , and $1 - i_m$ for s_m , the system becomes

$$\begin{aligned} i'_h &= \alpha_1(1-i_h)i_m - \lambda_h i_h - \alpha_h i_h \\ i'_m &= \gamma(1-i_m)i_h - \lambda_m i_m, \end{aligned}$$

which is the system that we will analyze.

To find our equilibrium points we will set our systems equal to zero and solve for i_h and i_m .

$$0 = \alpha_1(1-i_h)i_m - \lambda_h i_h - \alpha_h i_h$$

$$0 = \gamma(1-i_m)i_h - \lambda_m i_m,$$

The **disease free equilibrium point**, the point at which no humans or mosquitos are infected, is $(i_h, i_m) = (0, 0)$.

To find our equilibrium points we will set our systems equal to zero and solve for i_h and i_m .

$$0 = \alpha_1(1-i_h)i_m - \lambda_h i_h - \alpha_h i_h$$

$$0 = \gamma(1-i_m)i_h - \lambda_m i_m,$$

The **disease free equilibrium point**, the point at which no humans or mosquitos are infected, is $(i_h, i_m) = (0, 0)$.

To find our equilibrium points we will set our systems equal to zero and solve for i_h and i_m .

$$0 = \alpha_1(1-i_h)i_m - \lambda_h i_h - \alpha_h i_h$$

$$0 = \gamma(1-i_m)i_h - \lambda_m i_m,$$

The **disease free equilibrium point**, the point at which no humans or mosquitos are infected, is $(i_h, i_m) = (0, 0)$.

 $\left(i_{h},i_{m}\right)\neq\left(0,0\right).$

By setting $i'_m = 0$ we see that

$$0=\gamma(1-i_m)i_h-\lambda_m i_m.$$

$$i_h = \frac{\lambda_m i_m}{\gamma(1 - i_m)}$$

$$(i_h,i_m)\neq (0,0)\,.$$

By setting $i'_m = 0$ we see that

$$0 = \gamma (1 - i_m)i_h - \lambda_m i_m.$$

$$i_h = \frac{\lambda_m i_m}{\gamma (1 - i_m)}$$

$$(i_h,i_m)\neq (0,0)\,.$$

By setting $i'_m = 0$ we see that

$$0 = \gamma (1 - i_m)i_h - \lambda_m i_m.$$

$$i_h = \frac{\lambda_m i_m}{\gamma (1 - i_m)}$$

$$(i_h,i_m)\neq (0,0)\,.$$

By setting $i'_m = 0$ we see that

$$0 = \gamma (1 - i_m)i_h - \lambda_m i_m.$$

$$i_h = \frac{\lambda_m i_m}{\gamma (1 - i_m)}$$

Substituting this quantity into the equation $i'_h = 0$ gives the following expression for i^*_m :

$$\dot{b}_{m}^{*} = \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}$$

By plugging i_m^* into our previously obtained expression for i_h , we find the corresponding value of i_h^* to be

٠

$$i_h^* = \frac{\alpha_1 \gamma - \lambda_m \alpha_h - \lambda_m \lambda_h}{\alpha_1 \gamma + \alpha_h \gamma + \lambda_h \gamma}$$

Thus we obtain the endemic equilibrium point (i_h^*, i_m^*) .

Substituting this quantity into the equation $i'_h = 0$ gives the following expression for i^*_m :

$$\dot{b}_{m}^{*} = \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}$$

By plugging i_m^* into our previously obtained expression for i_h , we find the corresponding value of i_h^* to be

$$\dot{i}_{h}^{*} = \frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}$$

Thus we obtain the endemic equilibrium point (i_h^*, i_m^*) .

Substituting this quantity into the equation $i'_h = 0$ gives the following expression for i^*_m :

$$\dot{b}_{m}^{*} = \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}$$

By plugging i_m^* into our previously obtained expression for i_h , we find the corresponding value of i_h^* to be

$$\dot{i}_{h}^{*} = \frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}$$

Thus we obtain the endemic equilibrium point (i_h^*, i_m^*) .

$$(i_{h}^{*}, i_{m}^{*}) = \left(\frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}, \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}\right)$$
$$i_{h}^{*}, i_{m}^{*} > 0$$

$$\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h > 0.$$

From this inequality we see that

$$R_0 = rac{lpha_1 \gamma}{\lambda_m(lpha_h + \lambda_h)} > 1.$$

$$(i_{h}^{*}, i_{m}^{*}) = \left(\frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}, \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}\right)$$
$$i_{h}^{*}, i_{m}^{*} > 0$$

$$\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h > 0.$$

From this inequality we see that

$$R_0 = rac{lpha_1 \gamma}{\lambda_m(lpha_h + \lambda_h)} > 1.$$

$$(i_{h}^{*}, i_{m}^{*}) = \left(\frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}, \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}\right)$$
$$i_{h}^{*}, i_{m}^{*} > 0$$

$$\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h > 0.$$

From this inequality we see that

$$R_0 = rac{lpha_1 \gamma}{\lambda_m(lpha_h + \lambda_h)} > 1.$$

$$(i_{h}^{*}, i_{m}^{*}) = \left(\frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}, \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}\right)$$
$$i_{h}^{*}, i_{m}^{*} > 0$$

$$\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h > 0.$$

From this inequality we see that

$$R_0 = rac{lpha_1 \gamma}{\lambda_m(lpha_h + \lambda_h)} > 1.$$

$$(i_{h}^{*}, i_{m}^{*}) = \left(\frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}, \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}\right)$$
$$i_{h}^{*}, i_{m}^{*} > 0$$

$$\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h > 0.$$

From this inequality we see that

$$R_0 = rac{lpha_1 \gamma}{\lambda_m(lpha_h + \lambda_h)} > 1.$$

$$(i_{h}^{*}, i_{m}^{*}) = \left(\frac{\alpha_{1}\gamma - \lambda_{m}\alpha_{h} - \lambda_{m}\lambda_{h}}{\alpha_{1}\gamma + \alpha_{h}\gamma + \lambda_{h}\gamma}, \frac{\alpha_{1}\gamma - \alpha_{h}\lambda_{m} - \lambda_{h}\lambda_{m}}{\alpha_{1}\lambda_{m} + \alpha_{1}\gamma}\right)$$
$$i_{h}^{*}, i_{m}^{*} > 0$$

$$\alpha_1\gamma - \lambda_m\alpha_h - \lambda_m\lambda_h > 0.$$

From this inequality we see that

$$R_0 = rac{lpha_1 \gamma}{\lambda_m(lpha_h + \lambda_h)} > 1.$$

Classification of Systems of Differential Equations

Before moving into asymptotic stability, we will need to consider systems of first order linear differential equations of the form

$$x' = ax + by$$

 $y' = cx + dy$

This can be expressed as

$$\mathbf{x}' = A\mathbf{x},$$

where

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

and

$$\mathbf{x} = \left[\begin{array}{c} x \\ y \end{array} \right].$$

Before moving into asymptotic stability, we will need to consider systems of first order linear differential equations of the form

$$x' = ax + by$$

 $y' = cx + dy$

This can be expressed as

$$\mathbf{x}' = A\mathbf{x}$$

where

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}.$$

and

A nonzero vector ${\bf v}$ is an **eigenvector** of A and the constant λ is called an **eigenvalue** of A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

for the system $\mathbf{x}' = A\mathbf{x}$.

Theorem

Suppose A has a pair of real eigenvalues $\lambda_1 \neq \lambda_2$ and associated eigenvectors v_1 and v_2 then the general solution of the linear system x' = Ax is given by

$$x(t) = \alpha e^{\lambda_1 t} v_1 + \beta e^{\lambda_2 t} v_2$$

where $\alpha, \beta \in \mathbb{R}$.

Then when $\lambda_1, \lambda_2 < 0$ the solution will stabilize.

A nonzero vector ${\bf v}$ is an **eigenvector** of A and the constant λ is called an **eigenvalue** of A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

for the system $\mathbf{x}' = A\mathbf{x}$.

Theorem

Suppose A has a pair of real eigenvalues $\lambda_1 \neq \lambda_2$ and associated eigenvectors v_1 and v_2 then the general solution of the linear system x' = Ax is given by

$$x(t) = \alpha e^{\lambda_1 t} v_1 + \beta e^{\lambda_2 t} v_2$$

where $\alpha, \beta \in \mathbb{R}$.

Then when $\lambda_1, \lambda_2 < 0$ the solution will stabilize.

A nonzero vector ${\bf v}$ is an **eigenvector** of A and the constant λ is called an **eigenvalue** of A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

for the system $\mathbf{x}' = A\mathbf{x}$.

Theorem

Suppose A has a pair of real eigenvalues $\lambda_1 \neq \lambda_2$ and associated eigenvectors v_1 and v_2 then the general solution of the linear system x' = Ax is given by

$$x(t) = \alpha e^{\lambda_1 t} v_1 + \beta e^{\lambda_2 t} v_2$$

where $\alpha, \beta \in \mathbb{R}$.

Then when $\lambda_1, \lambda_2 < 0$ the solution will stabilize.

$$\det(A - \lambda I) = 0$$

$$(a-\lambda)(d-\lambda)-bc=0,$$

$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0.$$

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0,$$

$$\det(A - \lambda I) = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0,$$

$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0.$$

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0,$$

$$\det(A - \lambda I) = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0,$$

$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0.$$

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0,$$

$$\det(A - \lambda I) = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0,$$

$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0.$$

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0,$$

Using the quadratic formula, the roots of our characteristic equation are given by

$$\lambda_1 = \frac{\operatorname{tr}(A) + \sqrt{\operatorname{tr}(A)^2 - 4\operatorname{det}(A)}}{2}$$

and

$$\lambda_2 = \frac{\operatorname{tr}(A) - \sqrt{\operatorname{tr}(A)^2 - 4\operatorname{det}(A)}}{2}.$$

From this, we can see that

$$\lambda_1 + \lambda_2 = \operatorname{tr}(A)$$

and

$$\lambda_1\lambda_2 = \det(A).$$

Using the quadratic formula, the roots of our characteristic equation are given by

$$\lambda_1 = \frac{\operatorname{tr}(A) + \sqrt{\operatorname{tr}(A)^2 - \operatorname{4det}(A)}}{2}$$

and

$$\lambda_2 = \frac{\operatorname{tr}(A) - \sqrt{\operatorname{tr}(A)^2 - 4\operatorname{det}(A)}}{2}.$$

From this, we can see that

$$\lambda_1 + \lambda_2 = \operatorname{tr}(A)$$

and

$$\lambda_1\lambda_2=\det(A).$$

When

$${\rm tr}(A)^2-4{\rm det}(A)>0,$$

Stable Case:

$$\mathsf{tr}(A) < 0$$
 and $\mathsf{det}(A) > 0 \Longrightarrow \lambda_1, \lambda_2 < 0$

Unstable Case:

In any other case, the equilibrium point will be unstable.

Theorem

i.) If $R_0 < 1$, then the disease free equilibrium point is locally asymptotically stable.

ii.) If $R_0 > 1$, then the disease free equilibrium point is unstable and the disease endemic equilibrium point is locally asymptotically stable.

$$J(i_h, i_m) = \begin{bmatrix} \frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\ \frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m} \end{bmatrix} \qquad \begin{array}{l} \frac{\partial i'_h}{\partial i_m} & = -\lambda_h - \alpha_1 i_m - \alpha_h \\ \frac{\partial i'_h}{\partial i_h} & = \alpha_1 (1 - i_h) \\ \frac{\partial i'_m}{\partial i_h} & = \gamma (1 - i_m) \\ \frac{\partial i'_m}{\partial i_m} & = -\lambda_m - \gamma i_h \end{array}$$

Our final Jacobian matrix is

$$J(i_h, i_m) = \begin{bmatrix} -\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1(1 - i_h) \\ \gamma(1 - i_m) & -\lambda_m - \gamma i_h \end{bmatrix}.$$

$$J(i_h, i_m) = \begin{bmatrix} \frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\ \frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m} \end{bmatrix} \qquad \begin{array}{l} \frac{\partial i'_h}{\partial i_h} &= -\lambda_h - \alpha_1 i_m - \alpha_h \\ \frac{\partial i'_h}{\partial i_h} &= \alpha_1 (1 - i_h) \\ \frac{\partial i'_m}{\partial i_h} &= \gamma (1 - i_m) \\ \frac{\partial i'_m}{\partial i_m} &= -\lambda_m - \gamma i_h \end{array}$$

Our final Jacobian matrix is

$$J(i_h, i_m) = \begin{bmatrix} -\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1(1 - i_h) \\ \gamma(1 - i_m) & -\lambda_m - \gamma i_h \end{bmatrix}.$$

$$J(i_h, i_m) = \begin{bmatrix} \frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\ \frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m} \end{bmatrix} \qquad \begin{array}{l} \frac{\partial i'_h}{\partial i_h} & = -\lambda_h - \alpha_1 i_m - \alpha_h \\ \frac{\partial i'_h}{\partial i_h} & = \alpha_1 (1 - i_h) \\ \frac{\partial i'_m}{\partial i_h} & = \gamma (1 - i_m) \\ \frac{\partial i'_m}{\partial i_m} & = -\lambda_m - \gamma i_h \end{array}$$

Our final Jacobian matrix is

$$J(i_h, i_m) = \begin{bmatrix} -\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1(1 - i_h) \\ \gamma(1 - i_m) & -\lambda_m - \gamma i_h \end{bmatrix}$$

$$J(i_h, i_m) = \begin{bmatrix} \frac{\partial i'_h}{\partial i_h} & \frac{\partial i'_h}{\partial i_m} \\ \frac{\partial i'_m}{\partial i_h} & \frac{\partial i'_m}{\partial i_m} \end{bmatrix} \qquad \begin{array}{l} \frac{\partial i'_h}{\partial i_m} = -\lambda_h - \alpha_1 i_m - \alpha_h \\ \frac{\partial i'_h}{\partial i_m} = \alpha_1 (1 - i_h) \\ \frac{\partial i'_m}{\partial i_h} = \gamma (1 - i_m) \\ \frac{\partial i'_m}{\partial i_m} = -\lambda_m - \gamma i_h \end{array}$$

Our final Jacobian matrix is

$$J(i_h, i_m) = \begin{bmatrix} -\lambda_h - \alpha_1 i_m - \alpha_h & \alpha_1(1 - i_h) \\ \gamma(1 - i_m) & -\lambda_m - \gamma i_h \end{bmatrix}$$

٠

Evaluating at our disease-free equilibrium point (0,0), we obtain the Jacobian matrix, trace and determinant:

$$J(0,0) = \begin{bmatrix} -\lambda_h - \alpha_h & \alpha_1 \\ \gamma & -\lambda_m \end{bmatrix}$$

$$det(J(0,0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma tr(J(0,0)) = -(\lambda_m + \lambda_h + \alpha_h)$$

$$det(J(0,0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma$$

$$tr(J(0,0)) = -(\lambda_m + \lambda_h + \alpha_h)$$

Recal

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)}.$$

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

Then (0,0) is locally asymptotically stable when $R_0 < 1$.

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

$$det(J(0,0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma$$

$$tr(J(0,0)) = -(\lambda_m + \lambda_h + \alpha_h)$$

$\mathsf{tr}(J(0,0)) < 0$

Recal

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)}.$$

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

Then (0,0) is locally asymptotically stable when $R_0 < 1$.

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

$$det(J(0,0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma$$

$$tr(J(0,0)) = -(\lambda_m + \lambda_h + \alpha_h)$$

Recall

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)}.$$

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

Then (0,0) is locally asymptotically stable when $R_0 < 1$.

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

$$det(J(0,0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma$$

$$tr(J(0,0)) = -(\lambda_m + \lambda_h + \alpha_h)$$

Recall

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)}.$$

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

Then (0,0) is locally asymptotically stable when $R_0 < 1$.

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

$$det(J(0,0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma$$

$$tr(J(0,0)) = -(\lambda_m + \lambda_h + \alpha_h)$$

Recall

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)}.$$

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

Then (0,0) is locally asymptotically stable when $R_0 < 1$.

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

Then (0,0) is unstable when ${\it R}_0>1$.

$$det(J(0,0)) = \lambda_m(\lambda_h + \alpha_h) - \alpha_1 \gamma$$

$$tr(J(0,0)) = -(\lambda_m + \lambda_h + \alpha_h)$$

Recall

$$R_0 = \frac{\alpha_1 \gamma}{\lambda_m (\alpha_h + \lambda_h)}.$$

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

Then (0,0) is locally asymptotically stable when $R_0 < 1$.

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

We now evaluate the Jacobian at the disease endemic equilibrium point (i_h^*, i_m^*) .

$$J(i_{h}^{*}, i_{m}^{*}) = \begin{bmatrix} \frac{-\gamma(\alpha_{1} + \lambda_{h} + \alpha_{h})}{\lambda_{m} + \gamma} & \frac{\alpha_{1}(\alpha_{h}\gamma + \gamma\lambda_{h} + \alpha_{h}\lambda_{m} + \lambda_{m}\lambda_{h})}{\gamma(\alpha_{1} + \alpha_{h} + \lambda_{h})} \\ \frac{\gamma\lambda_{m}(\alpha_{1} + \alpha_{h} + \lambda_{h})}{\alpha_{1}(\lambda_{m} + \gamma)} & \frac{-\alpha_{1}(\lambda_{m} + \gamma)}{\alpha_{1} + \alpha_{h} + \lambda_{h}} \end{bmatrix}$$

$$det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$

We now evaluate the Jacobian at the disease endemic equilibrium point (i_h^*, i_m^*) .

$$J(i_{h}^{*}, i_{m}^{*}) = \begin{bmatrix} \frac{-\gamma(\alpha_{1} + \lambda_{h} + \alpha_{h})}{\lambda_{m} + \gamma} & \frac{\alpha_{1}(\alpha_{h}\gamma + \gamma\lambda_{h} + \alpha_{h}\lambda_{m} + \lambda_{m}\lambda_{h})}{\gamma(\alpha_{1} + \alpha_{h} + \lambda_{h})} \\ \frac{\gamma\lambda_{m}(\alpha_{1} + \alpha_{h} + \lambda_{h})}{\alpha_{1}(\lambda_{m} + \gamma)} & \frac{-\alpha_{1}(\lambda_{m} + \gamma)}{\alpha_{1} + \alpha_{h} + \lambda_{h}} \end{bmatrix}$$

$$\det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$

$$det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$
$$tr(J(i_h^*, i_m^*)) < 0$$

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

Then (i_h^*, i_m^*) is locally asymptotically stable when $R_0 > 1$.

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

$$det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$
$$tr(J(i_h^*, i_m^*)) < 0$$

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

Then (i_h^*, i_m^*) is locally asymptotically stable when $R_0 > 1$.

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

$$det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$
$$tr(J(i_h^*, i_m^*)) < 0$$

$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$

Then (i_h^*, i_m^*) is locally asymptotically stable when $R_0 > 1$.

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

$$det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$
$$tr(J(i_h^*, i_m^*)) < 0$$

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

Then (i_h^*, i_m^*) is locally asymptotically stable when $R_0 > 1$.

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

$$det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$
$$tr(J(i_h^*, i_m^*)) < 0$$

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

Then (i_h^*, i_m^*) is locally asymptotically stable when $R_0 > 1$.

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

Then $\left(i_{h}^{*},i_{m}^{*}
ight)$ is unstable when $R_{0}<1.$

$$det(J(i_h^*, i_m^*)) = \gamma \alpha_1 - \lambda_m (\alpha_h + \lambda_h)$$
$$tr(J(i_h^*, i_m^*)) = -\left(\frac{\gamma(\alpha_1 + \lambda_h + \alpha_h)}{\lambda_m + \gamma} + \frac{\alpha_1(\lambda_m + \gamma)}{\alpha_1 + \alpha_h + \lambda_h}\right)$$
$$tr(J(i_h^*, i_m^*)) < 0$$

$$R_0 > 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) < \alpha_1 \gamma$$

Then (i_h^*, i_m^*) is locally asymptotically stable when $R_0 > 1$.

$$R_0 < 1 \Longrightarrow \lambda_m(\lambda_h + \alpha_h) > \alpha_1 \gamma$$

- If all solutions of a system converge to the equilibrium point, then that equilibrium point is considered globally asymptotically stable.
- We will study the global asymptotic stability of our disease free equilibrium point, $(i_h, i_m) = (0, 0)$, using Lyapunov's second method for stability.

- If all solutions of a system converge to the equilibrium point, then that equilibrium point is considered globally asymptotically stable.
- We will study the global asymptotic stability of our disease free equilibrium point, $(i_h, i_m) = (0, 0)$, using Lyapunov's second method for stability.

Definition

Lyapunov Stability:

Let x^* be an equilibrium point for x' = F(x), where F(x) is a system of differential equations. Let $L: U \to \mathbb{R}$ be a continuous function defined on an open set U containing x^* . Suppose further that

1
$$L(x^*) = 0$$
 and $L(x) > 0$ if $x \neq x^*$

$$\frac{dL}{dt} < 0 \text{ in } U \setminus x^*$$

then x^* is globally asymptotically stable.

Theorem

If $R_0 < 1$, then (0,0) is globally asymptotically stable.

Proof: First, let

$$\Omega = \{(i_h, i_m) \in \mathbb{R}^2_+ : 0 \le i_h \le 1, 0 \le i_m \le 1\}$$

be all possible values of i_h and i_m .

Define the Lyapunov function $L: \Omega \to \mathbb{R}$ by

$$L(i_h, i_m) = \gamma i_h + (\lambda_h + \alpha_h) i_m$$

Theorem

If $R_0 < 1$, then (0,0) is globally asymptotically stable.

Proof: First, let

$$\Omega = \{(i_h, i_m) \in \mathbb{R}^2_+ : 0 \le i_h \le 1, 0 \le i_m \le 1\}$$

be all possible values of i_h and i_m .

Define the Lyapunov function $L: \Omega \to \mathbb{R}$ by

$$L(i_h, i_m) = \gamma i_h + (\lambda_h + \alpha_h) i_m$$

Theorem

If $R_0 < 1$, then (0,0) is globally asymptotically stable.

Proof:

First, let

$$\Omega = \{(i_h, i_m) \in \mathbb{R}^2_+ : 0 \le i_h \le 1, 0 \le i_m \le 1\}$$

be all possible values of i_h and i_m .

Define the Lyapunov function $L:\Omega\to\mathbb{R}$ by

$$L(i_h, i_m) = \gamma i_h + (\lambda_h + \alpha_h) i_m$$

We can see that $L(i_h, i_m) = 0$ at our disease-free equilibrium point (0, 0), and for all $(i_h, i_m) \in \Omega \setminus (0, 0)$, we see that $L(i_h, i_m) > 0$, then condition (1) of Lyapunov stability is satisfied.

Taking the total derivative of $L(i_h, i_m)$, we see

$$\frac{dL}{dt} = \frac{\partial L}{\partial i_h} \frac{di_h}{dt} + \frac{\partial L}{\partial i_m} \frac{di_m}{dt}$$

We can see that $L(i_h, i_m) = 0$ at our disease-free equilibrium point (0, 0), and for all $(i_h, i_m) \in \Omega \setminus (0, 0)$, we see that $L(i_h, i_m) > 0$, then condition (1) of Lyapunov stability is satisfied.

Taking the total derivative of $L(i_h, i_m)$, we see

$$\frac{dL}{dt} = \frac{\partial L}{\partial i_h} \frac{di_h}{dt} + \frac{\partial L}{\partial i_m} \frac{di_m}{dt}$$

Taking the partial derivatives of L and substituting in i'_h and i'_m we find

$$\frac{dL}{dt} = \gamma \left[(\alpha_1 - i_h) - (\lambda_h + \alpha_h) i_h \right] - (\lambda_h + \alpha_h) (-\lambda_m i_m + \gamma i_h (1 - i_m))$$
$$= - \left[\lambda_m (\lambda_h + \alpha_h) - \alpha_1 \gamma \right] i_m - \alpha_1 \gamma i_h i_m - \gamma (\lambda_h + \alpha_h) i_h i_m.$$

Since $R_0 < 1$ implies that $\lambda_m(\alpha_h + \lambda_h) > \alpha_1 \gamma$, it is evident that that $\frac{dL}{dt} < 0$ in $\Omega \setminus (0,0)$, so we may conclude that (0, 0) is globally asymptotically stable when $R_0 < 1$.

Taking the partial derivatives of L and substituting in i'_h and i'_m we find

$$\frac{dL}{dt} = \gamma \left[(\alpha_1 - i_h) - (\lambda_h + \alpha_h)i_h \right] - (\lambda_h + \alpha_h)(-\lambda_m i_m + \gamma i_h(1 - i_m))$$
$$= -\left[\lambda_m (\lambda_h + \alpha_h) - \alpha_1 \gamma \right]i_m - \alpha_1 \gamma i_h i_m - \gamma (\lambda_h + \alpha_h)i_h i_m.$$

Since $R_0 < 1$ implies that $\lambda_m(\alpha_h + \lambda_h) > \alpha_1 \gamma$, it is evident that that $\frac{dL}{dt} < 0$ in $\Omega \setminus (0,0)$, so we may conclude that (0, 0) is globally asymptotically stable when $R_0 < 1$.

Practical Application of Theoretical Findings

Practical Application of Theoretical Findings

