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Mathematical Model of Malaria
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S ′h = λhNh −
αShIm
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− µhSh + αhIh

Table 1. Parameters for the malaria model.
λh Birthrate of humans
λm Birthrate of mosquitos
µh Natural death rate of humans
µm Natural death rate of mosquitos
α Human infection rate
γ Mosquito infection rate
αh Human recovery rate
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System of Equations

From Figure 1, we derive the following system of differential equations:

S ′h = λhNh −
αShIm
Nh

− µhSh + αhIh

I ′h =
αShIm
Nh

− αhIh − µhIh

S ′m = λmNm −
γSmIh
Nh

− µmSm

I ′m =
γSmIh
Nh

− µmIm



Change of Variables

sh =
Sh
Nh
, sm =

Sm
Nm

, ih =
Ih
Nh
, and im =

Im
Nm

s ′h = λh(1− sh) + αhih − α1shim

i ′h = α1shim − λhih − αhih

s ′m = λm(1− sm)− γsmih
i ′m = γsmih − λmim



Change of Variables

Since Sh + Ih = Nh and Sm + Im = Nm,

sh + ih = 1 and sm + im = 1.
Thus, sh = 1− ih and sm = 1− im.

By differentiating...

s ′h = −i ′h and s ′m = −i ′m.
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By differentiating...
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Change of Variables

After substituting 1− ih for sh, and 1− im for sm, the system becomes

i ′h = α1(1− ih)im − λhih − αhih

i ′m = γ(1− im)ih − λmim,

which is the system that we will analyze.



Equilibrium Points

To find our equilibrium points we will set our systems equal to zero and
solve for ih and im.

0 = α1(1− ih)im − λhih − αhih

0 = γ(1− im)ih − λmim,

The disease free equilibrium point, the point at which no humans or
mosquitos are infected, is (ih, im) = (0, 0).
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Disease Endemic Equilibrium Point

The disease endemic equilibrium point, denoted (i∗h , i
∗
m), is the

equilibrium point at which the disease persists. Then

(ih, im) 6= (0, 0) .

By setting i ′m = 0 we see that

0 = γ(1− im)ih − λmim.

From this we can obtain a value of ih in terms of im.

ih =
λmim

γ(1− im)
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Disease Endemic Equilibrium Point

Substituting this quantity into the equation i ′h = 0 gives the following
expression for i∗m:

i∗m =
α1γ − αhλm − λhλm

α1λm + α1γ
.

By plugging i∗m into our previously obtained expression for ih, we find the
corresponding value of i∗h to be

i∗h =
α1γ − λmαh − λmλh
α1γ + αhγ + λhγ

.

Thus we obtain the endemic equilibrium point (i∗h , i
∗
m).
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)
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∗
m > 0

Then
α1γ − λmαh − λmλh > 0.

From this inequality we see that

R0 =
α1γ

λm(αh + λh)
> 1.

We conjecture that R0 is the basic reproduction number.
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Classification of Systems of Differential Equations

Before moving into asymptotic stability, we will need to consider systems
of first order linear differential equations of the form

x ′ = ax + by

y ′ = cx + dy

This can be expressed as
x′ = Ax,

where

A =

[
a b
c d

]
and

x =

[
x
y

]
.
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Classification of Systems of Differential Equations

A nonzero vector v is an eigenvector of A and the constant λ is called an
eigenvalue of A if

Av = λv

for the system x′ = Ax.

Theorem

Suppose A has a pair of real eigenvalues λ1 6= λ2 and associated
eigenvectors v1 and v2 then the general solution of the linear system
x ′ = Ax is given by

x(t) = αeλ1tv1 + βeλ2tv2

where α, β ∈ R.

Then when λ1, λ2 < 0 the solution will stabilize.
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Classification of Systems of Differential Equations

To find the eigenvalues of A solve the characteristic equation of A for λ:

det(A− λI ) = 0

(a− λ)(d − λ)− bc = 0,

λ2 − (a + d)λ+ (ad − bc) = 0.

Note that tr is the trace of the matrix, which is defined as the sum of the
entries along main diagonal. Then

λ2 − tr(A)λ+ det(A) = 0,



Classification of Systems of Differential Equations

To find the eigenvalues of A solve the characteristic equation of A for λ:

det(A− λI ) = 0

(a− λ)(d − λ)− bc = 0,

λ2 − (a + d)λ+ (ad − bc) = 0.

Note that tr is the trace of the matrix, which is defined as the sum of the
entries along main diagonal. Then

λ2 − tr(A)λ+ det(A) = 0,



Classification of Systems of Differential Equations

To find the eigenvalues of A solve the characteristic equation of A for λ:

det(A− λI ) = 0

(a− λ)(d − λ)− bc = 0,

λ2 − (a + d)λ+ (ad − bc) = 0.

Note that tr is the trace of the matrix, which is defined as the sum of the
entries along main diagonal. Then

λ2 − tr(A)λ+ det(A) = 0,



Classification of Systems of Differential Equations

To find the eigenvalues of A solve the characteristic equation of A for λ:

det(A− λI ) = 0

(a− λ)(d − λ)− bc = 0,

λ2 − (a + d)λ+ (ad − bc) = 0.

Note that tr is the trace of the matrix, which is defined as the sum of the
entries along main diagonal. Then

λ2 − tr(A)λ+ det(A) = 0,



Classification of Systems of Differential Equations

Using the quadratic formula, the roots of our characteristic equation are
given by

λ1 =
tr(A) +

√
tr(A)2 − 4det(A)

2

and

λ2 =
tr(A)−

√
tr(A)2 − 4det(A)

2
.

From this, we can see that

λ1 + λ2 = tr(A)

and
λ1λ2 = det(A).
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Classification of Systems of Differential Equations

When
tr(A)2 − 4det(A) > 0,

Stable Case:

tr(A) < 0 and det(A) > 0 =⇒ λ1, λ2 < 0

Unstable Case:

In any other case, the equilibrium point will be unstable.



Local Asymptotic Stability

Theorem

i.) If R0 < 1, then the disease free equilibrium point is locally
asymptotically stable.

ii.) If R0 > 1, then the disease free equilibrium point is unstable and the
disease endemic equilibrium point is locally asymptotically stable.



Local Asymptotic Stability

We will analyze our system using Jacobian matrices.

J(ih, im) =


∂i ′h
∂ih

∂i ′h
∂im

∂i ′m
∂ih

∂i ′m
∂im



∂i ′h
∂ih

= −λh − α1im − αh

∂i ′h
∂im

= α1(1− ih)

∂i ′m
∂ih

= γ(1− im)

∂i ′m
∂im

= −λm − γih

Our final Jacobian matrix is

J(ih, im) =

[
−λh − α1im − αh α1(1− ih)

γ(1− im) −λm − γih

]
.
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Local Asymptotic Stability

Evaluating at our disease-free equilibrium point (0, 0), we obtain the
Jacobian matrix, trace and determinant:

J(0, 0) =

[
−λh − αh α1

γ −λm

]

det(J(0, 0)) = λm(λh + αh)− α1γ

tr(J(0, 0)) = −(λm + λh + αh)



Local Asymptotic Stability

det(J(0, 0)) = λm(λh + αh)− α1γ

tr(J(0, 0)) = −(λm + λh + αh)

tr(J(0, 0)) < 0

Recall
R0 =

α1γ

λm(αh + λh)
.

R0 < 1 =⇒ λm(λh + αh) > α1γ

Then (0,0) is locally asymptotically stable when R0 < 1.

R0 > 1 =⇒ λm(λh + αh) < α1γ

Then (0,0) is unstable when R0 > 1.
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We now evaluate the Jacobian at the disease endemic equilibrium point
(i∗h , i

∗
m).

J(i∗h , i
∗
m) =


−γ(α1 + λh + αh)

λm + γ

α1(αhγ + γλh + αhλm + λmλh)

γ(α1 + αh + λh)

γλm(α1 + αh + λh)

α1(λm + γ)

−α1(λm + γ)

α1 + αh + λh



det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)



Local Asymptotic Stability

We now evaluate the Jacobian at the disease endemic equilibrium point
(i∗h , i

∗
m).

J(i∗h , i
∗
m) =


−γ(α1 + λh + αh)

λm + γ

α1(αhγ + γλh + αhλm + λmλh)

γ(α1 + αh + λh)

γλm(α1 + αh + λh)

α1(λm + γ)

−α1(λm + γ)

α1 + αh + λh



det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)



Local Asymptotic Stability

det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)
tr(J(i∗h , i

∗
m)) < 0

R0 > 1 =⇒ λm(λh + αh) < α1γ

Then (i∗h , i
∗
m) is locally asymptotically stable when R0 > 1.

R0 < 1 =⇒ λm(λh + αh) > α1γ

Then (i∗h , i
∗
m) is unstable when R0 < 1.



Local Asymptotic Stability

det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)
tr(J(i∗h , i

∗
m)) < 0

R0 > 1 =⇒ λm(λh + αh) < α1γ

Then (i∗h , i
∗
m) is locally asymptotically stable when R0 > 1.

R0 < 1 =⇒ λm(λh + αh) > α1γ

Then (i∗h , i
∗
m) is unstable when R0 < 1.



Local Asymptotic Stability

det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)
tr(J(i∗h , i

∗
m)) < 0

R0 > 1 =⇒ λm(λh + αh) < α1γ

Then (i∗h , i
∗
m) is locally asymptotically stable when R0 > 1.

R0 < 1 =⇒ λm(λh + αh) > α1γ

Then (i∗h , i
∗
m) is unstable when R0 < 1.



Local Asymptotic Stability

det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)
tr(J(i∗h , i

∗
m)) < 0

R0 > 1 =⇒ λm(λh + αh) < α1γ

Then (i∗h , i
∗
m) is locally asymptotically stable when R0 > 1.

R0 < 1 =⇒ λm(λh + αh) > α1γ

Then (i∗h , i
∗
m) is unstable when R0 < 1.



Local Asymptotic Stability

det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)
tr(J(i∗h , i

∗
m)) < 0

R0 > 1 =⇒ λm(λh + αh) < α1γ

Then (i∗h , i
∗
m) is locally asymptotically stable when R0 > 1.

R0 < 1 =⇒ λm(λh + αh) > α1γ

Then (i∗h , i
∗
m) is unstable when R0 < 1.



Local Asymptotic Stability

det(J(i∗h , i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h , i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)
tr(J(i∗h , i

∗
m)) < 0

R0 > 1 =⇒ λm(λh + αh) < α1γ

Then (i∗h , i
∗
m) is locally asymptotically stable when R0 > 1.

R0 < 1 =⇒ λm(λh + αh) > α1γ

Then (i∗h , i
∗
m) is unstable when R0 < 1.



Global Asymptotic Stability

If all solutions of a system converge to the equilibrium point, then
that equilibrium point is considered globally asymptotically stable.

We will study the global asymptotic stability of our disease free
equilibrium point, (ih, im) = (0, 0), using Lyapunov’s second method
for stability.
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Global Asymptotic Stability

Definition

Lyapunov Stability:
Let x∗ be an equilibrium point for x ′ = F (x), where F (x) is a system of
differential equations. Let L : U → R be a continuous function defined on
an open set U containing x∗. Suppose further that

1 L(x∗) = 0 and L(x) > 0 if x 6= x∗

2
dL

dt
< 0 in U \ x∗

then x∗ is globally asymptotically stable.



Global Asymptotic Stability

Theorem

If R0 < 1, then (0, 0) is globally asymptotically stable.

Proof:
First, let

Ω = {(ih, im) ∈ R2
+ : 0 ≤ ih ≤ 1, 0 ≤ im ≤ 1}

be all possible values of ih and im.

Define the Lyapunov function L : Ω→ R by

L(ih, im) = γih + (λh + αh)im
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Global Asymptotic Stability

We can see that L(ih, im) = 0 at our disease-free equilibrium point (0, 0),
and for all (ih, im) ∈ Ω \ (0, 0), we see that L(ih, im) > 0, then condition
(1) of Lyapunov stability is satisfied.

Taking the total derivative of L(ih, im), we see

dL

dt
=
∂L

∂ih

dih
dt

+
∂L

∂im

dim
dt
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Global Asymptotic Stability

Taking the partial derivatives of L and substituting in i ′h and i ′m we find

dL

dt
= γ [(α1 − ih)− (λh + αh)ih]− (λh + αh)(−λmim + γih(1− im))

= −[λm(λh + αh)− α1γ]im − α1γihim − γ(λh + αh)ihim.

Since R0 < 1 implies that λm(αh + λh) > α1γ, it is evident that that
dL

dt
< 0 in Ω \ (0, 0), so we may conclude that (0, 0) is globally

asymptotically stable when R0 < 1.



Global Asymptotic Stability

Taking the partial derivatives of L and substituting in i ′h and i ′m we find

dL

dt
= γ [(α1 − ih)− (λh + αh)ih]− (λh + αh)(−λmim + γih(1− im))

= −[λm(λh + αh)− α1γ]im − α1γihim − γ(λh + αh)ihim.

Since R0 < 1 implies that λm(αh + λh) > α1γ, it is evident that that
dL

dt
< 0 in Ω \ (0, 0), so we may conclude that (0, 0) is globally

asymptotically stable when R0 < 1.



Practical Application of Theoretical Findings

Parameter Values
λh 0.4
λm 0.6
α1 0.4
γ 0.7
αh 0.3



Practical Application of Theoretical Findings

Parameter Values
λh 0.4
λm 0.5
α1 0.8
γ 0.8
αh 0.3
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