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Abstract. We construct a model that captures the spread of malaria disease, find the
disease free and disease endemic equilibrium points, and find the conditions under which
these points are stable. We define a number called the basic reproduction number and
show that this number determines the stability of the system.

1. Introduction

Malaria is an infectious disease that is transmitted through human interactions with
infected mosquitos and mosquito interactions with infected humans. We study an SIS
(susceptible, infected, susceptible) model that captures these interactions. We assume that
there is no death due to the infection, but that there are natural deaths. A susceptible
human becomes infected by coming into contact with an infected mosquito at some constant
rate. Similarly, a susceptible mosquito is infected when it comes into contact with an
infected human at some different rate. We allow for a rate at which humans may recover
from the disease, in which case they immediately become a member of the susceptible class
again. In our model, we have chosen to make birth rates and death rates distinct, so we
do not have a constant population.

In a system of differential equations, an equilibrium point is a point at which the equa-
tions all equal zero. Intuitively, this means that the state of the system is not changing.
An equilibrium point where the infected populations are zero is referred to as a disease free
equilibrium point. Otherwise, it is known as a disease endemic equilibrium point. If the
solutions near the equilibrium points tend toward the points with time, then they are said
to be locally stable. An equilibrium point is said to be globally asymptotically stable if
the behavior of the system at any point tends toward the equilibrium point as time tends
toward infinity.

We further analyze the model by examining the number of individuals that become
infected from introducing one infected into a totally susceptible population. We find that if
the number of new infections is greater than one, then the disease will persist. Alternatively,
if the number of new infections is less than one, then the disease will die out. We refer
to this number as the basic reproduction number and it determines the stability of the
system.

2. The Model

Our populations are broken into total human population (Nh) and the total mosquito
population (Nm). The total human population is further divided into susceptible individu-
als (Sh) and infected individuals (Ih). Similarly, the total mosquito population consists of
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susceptible members (Sm) and infected members (Im). Our model is displayed in Figure 1
with parameters given by Table 1.

Sh Ih

Sm Im

λhNh

µhSh µhIh

λmNm

µmSm µmIm

αShIm
Nh

γSmIh
Nh

αhIh

Figure 1. Susceptible humans are bitten by infected mosquitos and move
to the infected class of humans at the rate αShIm

Nh
. Also, susceptible

mosquitos bite infected humans and move to the infected class of mosquitos
at the rate γSmIh

Nh
. Infected humans recover from the disease and once again

become susceptible at the rate αhIh.Table 1. Constant parameters for the malaria model.
λh birthrate of humans
λm birthrate of mosquitos
µh natural death rate of humans
µm natural death rate of mosquitos
α human infection rate
γ mosquito infection rate
αh human recovery rate

From Figure 1, we derive the following system of differential equations:
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dSh
dt

= λhNh −
αShIm
Nh

− µhSh + αhIh

dIh
dt

=
αShIm
Nh

− αhIh − µhIh

dSm
dt

= λmNm −
γSmIh
Nh

− µmSm

dIm
dt

=
γSmIh
Nh

− µmIm.

In order to ensure that our equilibrium points are not functions of time, we must elimi-
nate the population variable from our equations. We let

sh =
Sh
Nh

, sm =
Sm
Nm

, ih =
Ih
Nh

, and im =
Im
Nm

.

Then, since Sh + Ih = Nh and Sm + Im = Nm, we have sh + ih = 1 and sm + im = 1, so
that sh = 1− ih and sm = 1− im. With these new variables, the system becomes

s′h = λh(1− sh) + αhih − α1shim

i′h = α1shim − λhih − αhih
s′m = λm(1− sm)− γsmih
i′m = γsmih − λmim,

where α1 = αNm
Nh

. We use these identities to reduce our system to two equations by

observing that s′h = −i′h and that s′m = −i′m. After substituting 1− ih for sh, and 1− im
for sm, the system becomes

i′h = α1(1− ih)im − λhih − αhih
i′m = γ(1− im)ih − λmim,

which is the system that we will analyze.

3. Equilibrium Points

To find our equilibrium points, we must set our system of equations, i′h and i′m, equal
to zero and solve for ih and im. The simple case for which i′h and i′m are equal to zero is
when (ih, im) = (0, 0), meaning that there are no infected humans or mosquitos. This is
our disease free equilibrium point.

Now we consider the case in which (ih, im) 6= (0, 0) in order to obtain the disease endemic
equilibrium point.

Solving i′m = 0 for ih, we obtain
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ih =
λmim

γ(1− im)
.

Substituting this quantity into the equation i′h = 0 gives the following expression for i∗m:

i∗m =
α1γ − αhλm − λhλm

α1λm + α1γ
.

The corresponding value of i∗h is

i∗h =
α1γ − λmαh − λmλh
α1γ + αhγ + λhγ

.

Thus, we obtain the endemic equilibrium point (i∗h, i
∗
m).

Let us examine the values of i∗h and i∗m. Because these values represent the infected
human and mosquito populations, respectively, these numbers must be positive, which
means their numerators must always be positive (note that i∗h and i∗m have the same
numerator). For this to be true,

α1γ − λmαh − λmλh > 0.

From this inequality we see that

α1γ

λm(αh + λh)
> 1.

We will label this quantity R0. Analysis of the local asymptotic stability of the system will
allow us to prove that R0 is the basic reproduction number.

4. Classification of Systems of Differential Equations

Before moving into asymptotic stability of our system, we will need to consider systems
of first order linear differential equations of the form

x′ = ax+ by

y′ = cx+ dy.

Let

A =

[
a b
c d

]
.

Then we can rewrite the system as

x′ = Ax,

where

x =

[
x
y

]
.
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A nonzero vector ~v is called an eigenvector of A if A~v = λ~v. The constant λ is called an
eigenvalue of A. Eigenvalues and eigenvectors may be used to give solutions to systems
of differential equations of the form x′ = Ax.

Theorem 4.1. Suppose A has a pair of real eigenvalues λ1 6= λ2 and associated eigenvec-
tors ~v1 and ~v2. Then the general solution of the linear system x′ = Ax is given by

x(t) = αeλ1t ~v1 + βeλ2t ~v2

where α, β ∈ R.

We can see that if λ1 and λ2 are both negative, then our solution will stabilize. The
eigenvalues of A are given by the solutions λ to the equation

det(λI −A) = 0,

where det is the determinant and I is the 2× 2 identity matrix. We call this equation the
characteristic equation of A. Hence our characteristic equation is

(a− λ)(d− λ)− bc = 0,

which is equivalent to

λ2 − (a+ d)λ+ (ad− bc) = 0.

From this, we observe that

λ2 − tr(A)λ+ det(A) = 0 .

The roots of our characteristic equation are given by

λ1 =
tr(A) +

√
tr(A)2 − 4det(A)

2

and

λ2 =
tr(A)−

√
tr(A)2 − 4det(A)

2
.

From this, we can see that

λ1 + λ2 = tr(A)

and

λ1λ2 = det(A).

Hence, for tr(A)2 − 4det(A) > 0, if the trace is negative and the determinant is positive,
then the eigenvalues will both be negative and by Theorem 4.1, the equilibrium point will
be stable. However, in any other case the equilibrium point will be unstable.

Since we are working with a first order nonlinear system of differential equations, we can
analyze the stability of our model at its equilibrium points by linearizing the system using
the Jacobian matrix. We will then use this method of evaluating the trace and determinant
to evaluate our system of equations without explicitly calculating eigenvalues.
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5. Local Asymptotic Stability

In this section, we will study the local stability of both the disease free equilibrium point
and the disease endemic equilibrium point.

Theorem 5.1. i.) If R0 < 1, then the disease free equilibrium point is locally asymptotically
stable. ii.) If R0 > 1, then the disease free equilibrium point is unstable and the disease
endemic equilbrium point is locally asymptotically stable.

Proof:

Taking partial derivatives of i′h and i′m with respect to ih and im, we produce the following
set of equations:

∂i′h
∂ih

= −λh − α1im − αh

∂i′h
∂im

= α1(1− ih)

∂i′m
∂ih

= γ(1− im)

∂i′m
∂im

= −λm − γih.

Using partial derivatives, we produce a Jacobian matrix of the form

J(ih, im) =


∂i′h
∂ih

∂i′h
∂im

∂i′m
∂ih

∂i′m
∂im

 .
Substituting with our partial derivatives, the resulting Jacobian matrix is

J(ih, im) =

[
−λh − α1im − αh α1(1− ih)

γ(1− im) −λm − γih

]
.

Evaluating at our disease free equilibrium point (0, 0), we obtain the Jacobian matrix

J(0, 0) =

[
−λh − αh α1

γ −λm

]
,

from which we obtain

det(J(0, 0)) = λm(λh + αh)− α1γ

tr(J(0, 0)) = −(λm + λh + αh).



ANALYSIS OF THE SPREAD OF MALARIA DISEASE 7

Our trace is always negative, so given the case that R0 < 1, one sees that
λm(λh+αh) > α1γ. If this is true, then our determinant is positive, making this equilibrium
point locally asymptotically stable. Biologically, this means that the disease dies out.

Conversely, if R0 > 1, then λm(λh + αh) < α1γ. This would cause our determinant to
be negative, making the disease free equilibrium point unstable. Biologically, this means
that the disease persists.

We now evaluate the Jacobian at the disease endemic equilibrium point (i∗h, i
∗
m):

J(i∗h, i
∗
m) =


−γ(α1 + λh + αh)

λm + γ

α1(αhγ + γλh + αhλm + λmλh)

γ(α1 + αh + λh)

γλm(α1 + αh + λh)

α1(λm + γ)

−α1(λm + γ)

α1 + αh + λh

 ,
from which we obtain

det(J(i∗h, i
∗
m)) = γα1 − λm(αh + λh)

tr(J(i∗h, i
∗
m)) = −

(
γ(α1 + λh + αh)

λm + γ
+

α1(λm + γ)

α1 + αh + λh

)
.

Again, our trace is always negative, so given the case that R0 > 1, one sees that
λm(λh+αh) < α1γ. If this is true, then our determinant is positive, making this equilibrium
point locally asymptotically stable. Biologically, this means that the disease persists.

Conversely, if R0 < 1, then λm(λh + αh) > α1γ. This would cause our determinant to
be negative, making the disease free equilibrium point unstable. Biologically, this means
that the disease dies out.

Given that R0 satisfies the conditions set forth in Theorem 5.1, we can conclude that
R0 is the basic reproduction number.

�

6. Global Asymptotic Stability

If all solutions of a system that start out near an equilibrium point stay near the equi-
librium point forever, then that point is considered globally asymptotically stable. In this
section, we shall study the global stability properties of our disease free equilibrium point
(0, 0) using Lyapunov’s second method for stability.

Theorem 6.1. Lyapunov Stability

Let x∗ be an equilibrium point for x′ = F (x), where F (x) is a system of differential
equations. Let L : U → R be a continuous function defined on an open set U containing
x∗. Suppose further that

(1) L(x∗) = 0 and L(x) > 0 if x 6= x∗

(2)
dL

dt
< 0 in U \ x∗

then x∗ is globally asymptotically stable.
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Theorem 6.2. If R0 < 1, then (ih, im) = (0, 0) is globally asymptotically stable.

Proof:
First, let Ω = {(ih, im) ∈ R2

+ : 0 ≤ ih ≤ 1, 0 ≤ im ≤ 1} be all possible values of ih and
im. Define the Lyapunov function L : Ω→ R by

L(ih, im) = γih + (λh + αh)im

We can see that L(ih, im) = 0 at our disease free equilibrium point, (0, 0), and for all
(ih, im) ∈ Ω\(0, 0), we see that L(ih, im) > 0. Therefore, condition (1) of Lyapunov stability
is satisfied. Taking the total derivative of L(ih, im), we see

dL

dt
=
∂L

∂ih

dih
dt

+
∂L

∂im

dim
dt

.

Taking the partial derivatives of L and substituting in i′h and i′m gives

dL

dt
= γ [(α1 − ih)− (λh + αh)ih]− (λh + αh)(−λmim + γih(1− im))

= −[λm(λh + αh)− α1γ]im − α1γihim − γ(λh + αh)ihim.

Since R0 < 1 implies that λm(αh + λh) > α1γ, it is evident that
dL

dt
< 0 in Ω \ (0, 0),

so we may conclude that (0, 0) is globally asymptotically stable when R0 < 1.

�

7. Application of Theoretical Findings

Based on our theoretical findings, we can predict realistic conditions under which the
disease will either persist or go extinct. To illustrate this point, we will now provide
graphical representations of our results for both the cases in which R0 < 1 and R0 > 1.
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Parameter Values
λh 0.4
λm 0.6
α1 0.4
γ 0.7
αh 0.3

This figure shows that over the time span of 30 years, when R0 < 1 the solutions converge
to the disease free equilibrium point, (ih, im) = (0, 0), and the disease goes extinct.
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Conversely, we note from this figure that over the same time span, when R0 > 1 the
solutions converge to the disease endemic equilibrium point, (ih, im) = (i∗h, i

∗
m), and the

disease will persist.
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