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Abstract. We describe an idealized class of robots whose move-
ments are fixed in a single plane. We describe and discuss the
Forward Kinematic Problem and Inverse Kinematic Problem as it
relates to such robots. We show that these problems can essen-
tially be reduced to solving systems of polynomial equations. We
describe and develop the relevant components of Groebner Bases
and Elimination Theory. Using these tools, we analyze the geom-
etry of two specific planar robots. We also define kinematic sin-
gularities in terms of the Jacobian matrix and investigate possible
singularities for our example robots.

1. Introduction

The development of Groebner bases by Buchberger in the 1960s, and
in particular the Buchberger algorithm, gives a systematic way for solv-
ing systems of polynomial equations. Consequently, many applications
for Groebner bases have been discovered. One such application occurs
in robotic kinematics, the study of robot motion.

In this paper, we will consider kinematics problems for a specific
class of robots whose motions are restricted to a single plane. In the
next section, we will show how such problems can be modeled in al-
gebraic geometry as systems of polynomial equations. Afterwards, we
will summarize the relevant concepts and results from the theory of
Groebner bases. Finally, we will look at two specific robots and try to
understand their geometry using the setup and methods from the rest
of the paper.

2. Planar Robots

In this section we will give a geometric description of a robotic “arm”.
We will consider an idealized type of robot embedded in the standard
Cartesian plane, called a planar robot. We will restrict our attention
to arms composed of rigid segments and joints connected in series, like
those in a human arm. One end of the arm will be fixed in position,
while the other will be allowed to move through the plane by changing
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the settings of the various joints. We will call this end of a robotic
arm the “hand”. Our main goals are to consider various positions
and orientations of the hand and to determine how we can manipulate
the robot to reach a desired configuration. This is called the Inverse
Kinematic Problem.

Actual robots are constructed using a variety of joint types. In our
planar robots we will consider two types of joints. A planar revolute
joint allows a segment to rotate through the plane relative to the pre-
vious segment. We describe the setting of such a joint as the counter-
clockwise angle θ between the first segment and next one. A prismatic

Figure 1. a revolute joint

joint permits the translation of one segment of the arm along an axis
via retraction and extension of the joint. We describe the setting of a
prismatic joint as the length by which it is extended. Thus, a given
prismatic joint will have setting l such that 0 ≤ l ≤ m, where m is the
maxiumum length of the joint.

Figure 2. a prismatic joint

In a given robot, we may choose different rotation angles for the
revolute joints and different lengths for the prismatic joints to place
the hand at some position (a, b) in the plane. In the same way, we
may manipulate the hand’s orientation to be parallel to some unit
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vector u in R2. This observation that different joint settings cause
different positions and orientations for the hand prompts the following
definitions.

Definition 2.1. The joint space J for a planar robot cosisting of a
series composed of segments joined by r revolute joints and p prismatic
joints is defined as

J =

r times︷ ︸︸ ︷
S1 × S1 × . . .× S1×I1 × I2 × . . .× Ip, (1)

where there is one S1 factor for each revolute joint and the Ip represent
the possible settings for each prismatic joint.

Definition 2.2. The configuration space C for a planar robot is defined
as

C = U × V , (2)

where U ⊂ R2 consists of the subset of the plane whose points (a, b)
represent possible hand positions, and where V = S1 represent possible
hand orientations.

Each collection of joint settings will place the hand in some uniquely
determined position, with some uniquely determined orientation. There-
fore, we may define a function f from J to C which describes the hand
configuration obtained by a specific collection of joint settings.

We can now formally describe the Inverse Kinematic Problem as
follows: Given c ∈ C, how can we determine one or all the j ∈ J such
that f (j) = c?

To solve the Inverse Kinematic Problem, we must precisely describe
the function f which maps joint settings to configurations. In other
words, we need to describe the hand’s position and orientation in terms
of the rotation settings of the revolute joints and the lengths of the
prismatic joints.

For both of the robots we will consider, we fix the first revolute
joint at the center of the standard Cartesian coordinate system, which
we designate (x1, y1). We then introduce a local coordinate system at
each revolute joint to describe the relative positions of the segments
which meet at that joint. At each revolute joint i, we introduce an
(xi+1, yi+1) coordinate system with origin at joint i. The positive xi+1

axis lies along the direction of segment i+ 1, and the positive yi+1 axis
is determined such that it forms a standard right-handed coordinate
system.

We may transform coordinates in the (xi+1, yi+1) coordinate system
to the (xi, yi) coordinate system. To do this, we rotate a coordinate
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by the angle θi and then translate by the vector (li, 0). The rotation
alligns the xi+1 axis with the xi axis, and the translation moves the
origin of the (xi+1, yi+1) coordinate system to coincide with the origin
of the (xi, yi) coordinate system.

Figure 3. Local coordinate systems

Therefore, for a given point p in the (x1, y1) coordinate system, we
may transform its (xi+1, yi+1) coordinates to its (xi, yi) coordinates as
follows: (

ai
bi

)
=

(
cos θi − sin θi
sin θi cos θi

)
·
(
ai+1

bi+1

)
+

(
li
0

)
(3)

We will generally use a common shorthand for this coordinate trans-
formation which combines the rotation and translation into single ma-
trix: aibi

1

 =

cos θi − sin θi l1
sin θi cos θi 0

0 0 1

 ·
ai+1

bi+1

1

 = Ai ·

ai+1

bi+1

1

 (4)

One final tool we will use to analyze our robots is the Jacobian
matrix.

Definition 2.3. The Jacobian matrix for a function f : J → C is

Jf (j1, j2, . . . , jn) =


δf1
δj1
· · · δfn

δjn
δf2
δj1
· · · δfn

δjn
δf3
δj1
· · · δfn

δjn

 , (5)

where fi is the i-th component function of f .

The Jacobian matrix defines the best linear approximation of f .
Thus, f and Jf should behave similarly for a particular joint con-
figuration in J We will say that the rank of the Jacobian matrix is
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the maximal number of linear independent columns (or rows) in the
matrix.

We will assign dimensions to both the joint space J and the con-
figuration space C. Intuitively, we can understand the dimension of
each space to represent the number of degrees of freedom in that space
space. For example, the configuration space has dimension 3.

If the rank of the Jacobian matrix is smaller than the dimensions of
J and C, then the robot’s behavior at that point differs from what we
would expect.

Definition 2.4. A kinematic singularity for a robot is a point j ∈ J
such that Jf (j) has rank strictly less than min (dim (J ) , dim (C)) .

3. Groebner Bases and Polynomial Equations

In this section we will discuss some necessary terms and concepts
from the theory of Groebner bases. We will begin by defining mono-
mials, polynomials, and some relevant terminology.

Definition 3.1. A monomial in x1, . . . , xn is a product of the form

xα1
1 · xα2

2 · · · xαn
n , (6)

where all of the exponents α1, . . . , αn are nonnegative integers. The
total degree of this monomial is the sum α1 + · · ·+ αn.

Definition 3.2. A polynomial f in x1, . . . , xn with coefficients in k is
a finite linear combination (with coefficients in k) of monomials. We
will write a polynomial f in the form

f =
∑
α

aαx
α, aα ∈ k, (7)

where the sum is over a finite number of n-tuples α = (α1, . . . , αn).
The set of all polynomials in x1, . . . , xn with coefficients in k is denoted
k [x1, . . . , xn].

Definition 3.3. Let f =
∑

α aαx
α be a polynomial in k [x1, . . . , xn].

i. We call aα the coefficient of the monomial xα.
ii. If aα 6= 0, then we call aαx

α a term of f .
iii. The total degree of f , denoted deg (f), is the maximum |α| such

that the coefficient aα is nonzero.

In polynomials of one variable, we generally order the monomials
by degree. However, the order in which we list the monomials for a
polynomial in general is not as straightforward.
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Definition 3.4. A monomial ordering on k > [x1, . . . , xn] is any
relation > on Zn

≥0 satisfying:

i. > is a total ordering on Zn
≥0.

ii. If α > β and γ ∈ Zn
≥0, then α + γ > β + γ.

iii. > is a well-ordering on Zn
≥0.

The monomial ordering we are interested in for solving systems of
polynomial equations is called lexicographic order. It is similar to the
alphabetic ordering of words in a dictionary.

Definition 3.5 (Lexicographic Order). Let α = (α1, . . . , αn) and β =
(β1, . . . , βn) ∈ Zn

≥0. We say α >lex β if, in the vector difference α−β ∈
Zn, the leftmost nonzero entry is positive.

One can easily show that lexicographic order is a monomial ordering
on k > [x1, . . . , xn].

We will now introduce some important ideas from the theory of poly-
nomial rings which we will use to develop a definition of a Groebner
basis.

Definition 3.6. Let f1, . . . , fs be polynomials in k [x1, . . . , xn]. Then
we set

〈f1, . . . , fs〉 =

{
s∑
i=1

hifi, where h1, . . . , hs ∈ k [x1, . . . , xn]

}
. (8)

Definition 3.7. A subset I ⊂ k [x1, . . . , xn] is an ideal if it satisfies:

i. 0 ∈ I.
ii. If f, g ∈ I, then f + g ∈ I.

iii. If f ∈ I and h ∈ k [x1, . . . , xn], then hf ∈ I.

Proposition 3.8. If f1, . . . , fs ∈ k [x1, . . . , xn], then 〈f1, . . . , fs〉 is an
ideal of k [x1, . . . , xn]. We will call 〈f1, . . . , fs〉 the ideal generated by
f1, . . . , fs.

Theorem 3.9 (Hilbert Basis Theorem). Every ideal I ⊂ k [x1, . . . , xn]
has a finite generating set. That is, I = 〈g1, . . . , gt〉 for some g1, . . . , gt ∈
I.

If f is an element of k[x1, . . . , xn], we denote lt(f) as the leading
term of this polynomial under a given monomial ordering.

Definition 3.10. Fix a monomial order. A finite subsetG = {g1, . . . , gn}
of an nonzero ideal I is said to be a Groebner basis if

〈lt(g1), . . . , lt(gn)〉 = 〈lt(I)〉,
where the right-hand side is the ideal generated by the leading terms
of every element of I.
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Proposition 3.11. Fix a monomial order. Then every nonzero ideal
I ⊂ k [x1, . . . , xn] has a Groebner basis. Furthermore, any Groebner
basis for an ideal I is a basis of I.

4. Applications

Figure 4. 2 revolute joints and 1 prismatic joint

Robot 1. The first robot we will consider is composed of two revolute
joints and one prismatic joint. The first prismatic joint is fixed at
the origin, and connects the fixed segment of the arm with the second
segment. A prismatic joint with variable length is attached to the
end of the second segment. Finally, the second revolute joint joins the
prismatic joint on the second segment with the hand, which we will
consider to be the third segment of the arm.

Both revolute joints are allowed to rotate freely in the plane, and the
prismatic joint may be set at any length between a minimum length,
m1, and a maximum length, m2. Therefore, the joint space is given by
J = S1 × S1 × [m1,m2].

We would like to find a function f : J → C describes a rule for
getting from a particular set of joint settings to the uniquely determined
configuration for those settings. Let us suppose the length of the fixed
segment to be 1. Given values for θ1, θ2, and l2, basic trigonometry
shows that the position of the hand is the point in R2 defined by ((1 +
l2) cos(θ1), (1 + l2) sin(θ1)). The orientation of the hand is given simply
by the sum of the angles traversed by each individual revolute joint.

Thus, an explicit function f : J → C can be written in terms of
trigonometric functions as

f(θ1, θ2, l2) =

(1 + l2) cos(θ1)
(1 + l2) sin(θ1)

θ1 + θ2

 . (9)
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With this function in hand, we can now solve the Inverse Kinematic
Problem. In order to apply the techniques of Groebner Bases to the
problem, we wish to replace these trigonometric functions with poly-
nomial functions via the substitutions ci = cos(θi) and si = sin(θi),
where c2i + s2

i = 1 for i = 1, 2.
For this particular robot, the orientation of the hand is trivial since

the final revolute joint does not affect the position of the hand. Given
any value of θ1, a desired orientation α = θ1 + θ2 is given by setting
θ2 = α− θ1. Therefore, we will need only consider the hand’s position.
Based on (9), one can see that the possible ways to reach a fixed position
(a, b) ∈ R2 are represented by solving the system of equations

a = (1 + l2)c1 (10)

b = (1 + l2)s1 (11)

0 = s2
1 + c21 − 1 (12)

for s1, s2, c1, and c2.
Fix a lexicographic monomial ordering with c1 > s1 > l2. Using

Mathematica, we find that

{−a2 − b2 + (1 + l2)
2, b(1 + l2)− s1(a

2 + b2), c1(a
2 + b2)− a(1 + l2)}

forms a Groebner basis for the ideal generated by equations (10)-(12).
Setting each polynomial in this Groebner basis equal to 0 and solving
yields two sets of solutions:

c1 =
a√

a2 + b2
, s1 =

b√
a2 + b2

, l2 =
√
a2 + b2 − 1

c1 = − a√
a2 + b2

, s1 = − b√
a2 + b2

, l2 = −
√
a2 + b2 − 1.

The second solution may be discarded because it gives a negative value
for l2.

Given that l2 can take on any value in [0,m3] for some fixed positive
value of m3, a and b can take on any values that satisfy the inequality
1 ≤

√
a2 + b2 ≤ m3 + 1, or equivalently 1 ≤ a2 + b2 ≤ (m3 + 1)2.

Thus, the possible placements in the configuration space trace out the
annulus between the circles centered at the origin (that is, joint 1) with
radii 1 and m3 + 1.

Because min{dim(Jf ), dim(C)} = 3, a kinematic singularity occurs
when the dimension of the Jacobian matrix evaluated at a point is less
than or equal to 2. As the mapping is defined by (9), the Jacobian
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matrix is represented by

Jf (θ1, θ2, l2) =

−(1 + l2) sin(θ1) 0 cos(θ1)
(1 + l2) cos(θ1) 0 sin(θ1)

1 1 0

 .

The dimension of Jf is less than 3 precisely when det(Jf ) = 0. We
have

0 = det(Jf ) = (1 + l2)(cos2(θ1) + sin2(θ1)) = 1 + l2

if and only if l2 = −1, which is not possible because l2 ∈ [0,m3]. Thus,
there are no points of singularity in the problem.

Robot 2. The second planar robot of interest is composed of two
revolute joints, each attached to segments of length 1, followed by a
third revolute joint that leads into a prismatic joint of length l4, where
m1 ≤ l4 ≤ m2.

Figure 5. 3 revolute joints and 1 prismatic joint

As discussed earlier, the transformation from the i+ 1th coordinate
system to the ith coordinate system can be represented by the equationaibi

1

 =

cos(θi) − sin(θi) li
sin(θi) cos(θi) 0

0 0 1

 ·
ai+1

bi+1

1

 = Ai ·

ai+1

bi+1

1

 . (13)

Because the origins of the (x1, y1) and (x2, y2) coordinate systems are
both at joint 1, we say that l1 = 0 so that

A1 =

cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

 .

Bearing in mind that l2 = l3 = 1 and that the coordinates of the hand
in the (x4, y4) coordinate system are (l4, 0), we can find the hand’s
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location in terms of the global coordinate system by working back one
joint at a time through matrix multiplication:x1

y1

1

 = A1A2A3

l40
1

 . (14)

Multiplying and simplifying with sum and difference trigonometric
identities yieldsx1

y1

1

 =

l4 cos(θ1 + θ2 + θ3) + cos(θ1 + θ2) + cos(θ1)
l4 sin(θ1 + θ2 + θ3) + sin(θ1 + θ2) + sin(θ1)

1

 . (15)

This gives us the unique hand placement for any particular values of
θ1, θ2, θ3, and l4. Furthermore, the orientation is once again given by
the sum of the angles of the individual revolute joints. Hence, we can
define a mapping from the joint space of this robot to its configuration
space by

g(θ1, θ2, θ3, l4) =

l4 cos(θ1 + θ2 + θ3) + cos(θ1 + θ2) + cos(θ1)
l4 sin(θ1 + θ2 + θ3) + sin(θ1 + θ2) + sin(θ1)

θ1 + θ2 + θ3

 .

As before, we wish to convert these transcendental functions into poly-
nomials in order to apply the techniques of Groebner bases to find
solutions by setting ci = cos(θi) and si = sin(θi), where c2i + s2

i = 1 for
i = 1, 2, 3.

The orientation of the hand cannot be expressed as a polynomial in
ci and si. We will show, however, that c = cos(θ1 + θ2 + θ3) and s =
sin(θ1 + θ2 + θ3) can be written in this way. At the cost of introducing
an additional component to the configuration space, we may use the
values of c and s to find the uniquely determined angle. Using basic
trigonometric identities, it can be seen that

c = c3(c1c2 − s1s2)− s3(c1s2 + s1c2)

and similarly

s = c3(s1c2 + c1s2) + s3(c1c2 − s1s2).

Given a fixed hand placement (a, b) ∈ R2 and orientation in terms
of c = cos(θ1 + θ2 + θ3) and s = sin(θ1 + θ2 + θ3), we now wish to find
the possible joint settings that yield this configuration.

We need to find solutions to the following system of polynomial equa-
tions:
−a+ c1 + c1c2 − s1s2 + l4(−s1(c3s2 + c2s3) + c1(c2c3 − s2s3)) = 0
−b+ s1 + c2s1 + c1s2 + l4(c1(c3s2 + c2s3) + s1(c2c3 − s2s3)) = 0
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−c+ c3(c1c2 − s1s2)− (c2s1 + c1s2)s3 = 0
−d+ c3(c2s1 + c1s2) + (c1c2 − s1s2)s3 = 0
−1 + c21 + s21 = 0
−1 + c22 + s22 = 0
−1 + c23 + s23 = 0
−1 + c2 + d2 = 0

Using Mathematica, we obtain the following Groebner basis:
−1 + c2 + d2,
−1 + c23 + s23,
b2− 2abcd+ a2d2− b2d2 + 2bcc3s2− 2ac3ds2 + s22 + 2bcs3− 2ads3 + 2c3s2s3,
bc− ad+ c3s2 + s3 + c2s3,
−bcc3 + bcc2c3 + ac3d− ac2c3d− s2 + c2s2 + bcs2s3 − ads2s3 + 2s2s23,
−1−b2+c22+2abcd−a2d2+b2d2−2bcc3s2+2ac3ds2−2bcs3+2ads3−2c3s2s3,
−b+ acd− c2c3d+ bd2 + s1 − cs3 + ds2s3,
c1 − cc2c3 + bcd− ad2 + ds3 + cs2s3,
−ac+ c3 + c2c3 − bd+ l4 − s2s3

It is difficult to gain new information from this Groebner basis alone.
Instead, we consider various specializations of the system. That is, we choose
desired configurations and recompute the Groebner basis. We find that the
edge of the disk of radius 4 has only one orientation possible, and that there
is only one joint setting which gives that configuration. Inside the disk, more
joint settings become possible at increasingly less restrictive orientations. In
general, with a fixed prismatic setting, at least two joint settings will reach a
valid configuration. On the disk of radius 1, all orientations become possible
under some joint setting.

The Jacobian matrix for this robot, in reduced row-echelon form, is given
by: 1 0 0 cos θ3 csc θ2

0 1 0 − cos θ3 cot θ22 + sin θ3
0 0 1 cos (θ2 + θ3) csc θ2


Thus, there are no kinematic singularities for this robot because the rank

of Jg is always 3.
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