Phase Plane Diagrams of Difference Equations

Tanya Dewland¹ Jerome Weston² Rachel Weyrens³

¹Department of Mathematics University of Mississippi Oxford, MS

²Department of Mathematics Louisiana State University Baton Rouge, LA

³Department of Mathematics University of Arkansas Fayetteville, AR

ヘロン ヘアン ヘビン ヘビン

-

Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction

Terminology Affine Transformation

Phase Plane Diagrams Jordan Canonical Forms

Example

Conclusion

イロン 不同 とくほう イヨン

ъ

Terminology Affine Transformation

- Model discrete dynamical systems to determine outcome.
- Determine qualitative features of a system of homogeneous difference equations with constant coefficients.

・ロト ・ 理 ト ・ ヨ ト ・

Terminology Affine Transformation

System of Difference Equations

$$x(k+1) = ax(k) + by(k)$$
$$y(k+1) = cx(k) + dy(k)$$

General solution:

$$\mathbf{z}(k) = A^{k} \mathbf{z}(0)$$
Where $z = \begin{pmatrix} x(k) \\ y(k) \end{pmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

イロト 不得 とくほと くほとう

Terminology Affine Transformation

- Each solution is in the set
 {(x(k), y(k)) : k ∈ ℕ}
- Trajectory
- Phase Plane Diagram

・ロト ・ ア・ ・ ヨト ・ ヨト

ъ

Terminology Affine Transformation

Affine Transformation

- A tool for changing variables
- Preserves collinearity

イロン 不得 とくほ とくほう 一日

Terminology Affine Transformation

Change in Variables

$$\mathbf{z}(k) = P\mathbf{w}(k)$$
$$\mathbf{w} = \begin{bmatrix} u(k) \\ v(k) \end{bmatrix}, P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$
Create $J = P^{-1}AP$ gives $\mathbf{w}(k+1) = J\mathbf{w}(k)$ General solution: $\mathbf{w}(k) = J^k\mathbf{w}(0)$

$$x = p_{11}u + p_{12}v$$
$$y = p_{21}u + p_{22}v.$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Terminology Affine Transformation

Jordan Canonical Form Theorem

Let A be a two by two real matrix. Then there is a nonsingular real matrix P so that

$$A=PJP^{-1},$$

where:

If *A* has real eigenvalues λ_1 , λ_2 , not necessarily distinct, with linearly independent eigenvectors, then

$$J_1 = \begin{bmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_2 \end{bmatrix}$$

.

イロト 不得 とくほ とくほ とうほ

Terminology Affine Transformation

Jordan Canonical Form Theorem cont.

If A has a single eigenvalue λ with a single independent eigenvector, then

$$J_2 = \begin{bmatrix} \lambda & \mathbf{0} \\ \mathbf{1} & \lambda \end{bmatrix}.$$

If *A* has complex eigenvalues $\alpha \pm i\beta$, then

$$J_3 = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}.$$

・ロト ・ 理 ト ・ ヨ ト ・

-

1

Terminology Affine Transformation

Spectral Radius Theorem

$$r(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue}\}$$

If $r(A) < 1$, then any solution to $\mathbf{z}(k) = A^k \mathbf{z}(0)$ has the property

$$\lim_{k\to\infty}A^kz(0)=0.$$

If $r(A) \ge 1$, some solutions $\mathbf{z}(k)$ does not tend toward the origin as $k \to \infty$.

イロン 不得 とくほ とくほう 一日

Jordan Canonical Forms

Case 1

$$J_1 = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

Where $\lambda_1, \lambda_2 \in \mathbb{R}$

General solution:
$$\mathbf{w}(k) = \begin{pmatrix} c_1 \lambda_1^k \\ c_2 \lambda_2^k \end{pmatrix}$$

Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations

Jordan Canonical Forms

Source and Sink

Jordan Canonical Forms

Source and Sink

Jordan Canonical Forms

Unstable and Stable Star

Dewland, Weston, Weyrens

Phase Plane Diagrams of Difference Equations

Jordan Canonical Forms

Saddle and Saddle with Reflection

Jordan Canonical Forms

Degenerate Node

$$\mathbf{w}(k) = \begin{pmatrix} \mathbf{c}_1 \\ \lambda_2^k \mathbf{c}_2 \end{pmatrix}$$

Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations

Jordan Canonical Forms

Case 2

$$J_2 = egin{bmatrix} \lambda & \mathbf{0} \ \mathbf{1} & \lambda \end{bmatrix}$$

Where $\lambda \in \mathbb{R}$

General solution:
$$\mathbf{w}(k) = \lambda^{k-1} \begin{pmatrix} c_1 \lambda \\ c_1 k + c_2 \lambda \end{pmatrix}$$

◆□> ◆□> ◆注> ◆注> 二注:

Jordan Canonical Forms

Case 3

$$J_3 = \begin{bmatrix} lpha & eta \ -eta & lpha \end{bmatrix}$$

Where $\alpha, \beta \in \mathbb{R}$

General solution:
$$\mathbf{w}(k) = |\lambda|^k \begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
 where $|\lambda| = \sqrt{\alpha^2 + \beta^2}$ and $\theta = \tan^{-1}(\frac{\beta}{\alpha})$

Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations

Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations

イロト イポト イヨト イヨト 三日

$$x(k+1) = x(k) + y(k)$$

 $y(k+1) = 0.25x(k) + y(k)$

Here
$$A = \begin{bmatrix} 1 & 1 \\ 0.25 & 1 \end{bmatrix}$$

The eigenvalues of A are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = \frac{3}{2}$.
 $P = \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix}$ and $J = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{3}{2} \end{bmatrix}$

Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Thank You!

Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations

(日)