Phase Plane Diagrams of Difference Equations

Tanya Dewland1 \hspace{1cm} Jerome Weston2 \hspace{1cm} Rachel Weyrens3

1Department of Mathematics
University of Mississippi
Oxford, MS

2Department of Mathematics
Louisiana State University
Baton Rouge, LA

3Department of Mathematics
University of Arkansas
Fayetteville, AR
Phase Plane Diagrams of Difference Equations

Dewland, Weston, Weyrens
Outline

- **Introduction**
 - Terminology
 - Affine Transformation

- **Phase Plane Diagrams**
 - Jordan Canonical Forms

- **Example**

- **Conclusion**
Goals

- Model discrete dynamical systems to determine outcome.
- Determine qualitative features of a system of homogeneous difference equations with constant coefficients.
System of Difference Equations

\[x(k + 1) = ax(k) + by(k) \]
\[y(k + 1) = cx(k) + dy(k) \]

General solution:
\[z(k) = A^k z(0) \]

Where \(z = \begin{pmatrix} x(k) \\ y(k) \end{pmatrix} \) and \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)
• Each solution is in the set
 \[\{(x(k), y(k)) : k \in \mathbb{N}\} \]
• Trajectory
• Phase Plane Diagram
Affine Transformation

- A tool for changing variables
- Preserves collinearity
Change in Variables

\[z(k) = Pw(k) \]
\[w = \begin{bmatrix} u(k) \\ v(k) \end{bmatrix}, \quad P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \]

Create \(J = P^{-1}AP \)
gives \(w(k+1) = Jw(k) \)
General solution: \(w(k) = J^k w(0) \)
\[x = p_{11} u + p_{12} v \]
\[y = p_{21} u + p_{22} v. \]
Let A be a two by two real matrix. Then there is a nonsingular real matrix P so that

$$A = PJP^{-1},$$

where:

If A has real eigenvalues λ_1, λ_2, not necessarily distinct, with linearly independent eigenvectors, then

$$J_1 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$
Jordan Canonical Form Theorem cont.

If A has a single eigenvalue λ with a single independent eigenvector, then

$$J_2 = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix}.$$

If A has complex eigenvalues $\alpha \pm i\beta$, then

$$J_3 = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}.$$
Spectral Radius Theorem

\[r(A) = \max \{|\lambda| : \lambda \text{ is an eigenvalue}\} \]

If \(r(A) < 1 \), then any solution to \(z(k) = A^k z(0) \) has the property
\[\lim_{k \to \infty} A^k z(0) = 0. \]

If \(r(A) \geq 1 \), some solutions \(z(k) \) does not tend toward the origin as \(k \to \infty \).
Case 1

\[J_1 = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \]

Where \(\lambda_1, \lambda_2 \in \mathbb{R} \)

General solution: \(\mathbf{w}(k) = \begin{pmatrix} c_1 \lambda_1^k \\ c_2 \lambda_2^k \end{pmatrix} \)
Source and Sink

Figure: Trajectories

(c) $\lambda_1 > \lambda_2 > 1$
(d) $0 < \lambda_1 < \lambda_2 < 1$
Source and Sink

(a) $\lambda_1 > \lambda_2 > 1$

(b) $0 < \lambda_1 < \lambda_2 < 1$

Figure: $v = cu^p$
Unstable and Stable Star

(a) $\lambda_1 = \lambda_2 > 1$

(b) $0 < \lambda_1 = \lambda_2 < 1$

Figure: $v = \frac{c_2}{c_1} u$
Saddle and Saddle with Reflection

(a) $0 < \lambda_1 < 1, \lambda_2 > 1$

(b) $-1 < \lambda_1 < 0 < 1 < \lambda_2$

Figure: $v = cu^p$
Degenerate Node

\[w(k) = \begin{pmatrix} c_1 \\ \lambda^k c_2 \end{pmatrix} \]

\[0 < \lambda_2 < \lambda_1 = 1 \]

Figure: $0 < \lambda_2 < \lambda_1 = 1$
Case 2

\[J_2 = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix} \]

Where \(\lambda \in \mathbb{R} \)

General solution: \(w(k) = \lambda^{k-1} \begin{pmatrix} c_1 \lambda \\ c_1 k + c_2 \lambda \end{pmatrix} \)
Introduction

Phase Plane Diagrams

Example

Conclusion

Jordan Canonical Forms

Figure:

\[v = \frac{u}{|\lambda|} \log |\lambda| \frac{u}{c_1} + u \frac{c_2}{c_1} \]

Dewland, Weston, Weyrens

Phase Plane Diagrams of Difference Equations
Case 3

\[J_3 = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \]

Where \(\alpha, \beta \in \mathbb{R} \)

General solution: \(w(k) = |\lambda|^k \begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \) where

\[|\lambda| = \sqrt{\alpha^2 + \beta^2} \text{ and } \theta = \tan^{-1}\left(\frac{\beta}{\alpha} \right) \]
(a) $\alpha^2 + \beta^2 = 1$

(b) $\alpha^2 + \beta^2 > 1$

(c) $\alpha^2 + \beta^2 < 1$

Figure: J_3 Diagrams
Example

\[x(k + 1) = x(k) + y(k) \]
\[y(k + 1) = 0.25x(k) + y(k) \]

Here \(A = \begin{bmatrix} 1 & 1 \\ 0.25 & 1 \end{bmatrix} \)

The eigenvalues of \(A \) are \(\lambda_1 = \frac{1}{2} \) and \(\lambda_2 = \frac{3}{2} \).

\[P = \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \] and \(J = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{3}{2} \end{bmatrix} \)
(a) Phase Plane of A

(b) Phase Plane of J
Dewland, Weston, Weyrens Phase Plane Diagrams of Difference Equations
Thank You!