- 1. Find the truth tables of each of the following compound statements.
 - (a) $(\sim (p \land q)) \land (p \lor \sim q),$
 - (b) $[p \land (\sim p \lor q)] \lor [(\sim (p \land q)) \land (p \lor q)],$
 - (c) $(\alpha \wedge \sim \beta) \lor (\beta \wedge \sim \gamma) \lor (\gamma \wedge \sim \alpha)$.
- 2. Which of the following Boolean functions are equal? Prove using truth tables.
 - (a) $(p \wedge \sim q) \lor (\sim p \wedge q)$,
 - (b) $(p \lor q) \land (\sim (p \land q)),$
 - (c) $\sim ((p \land q) \lor ((\sim p) \land (\sim q))).$
- Using the systematic approach illustrated in class and in the proof of Theorem 1, Page BF-5, express the Boolean functions given by the following truth tables using only ~, ∨, and ∧.

(a)	p	q	$\int f$	(b)	p	q	r	g	(c)	p	q	r	h
	0	0	1		0	0	0	1		0	0	0	0
	0	1	0		0	0	1	0		0	0	1	1
	1	0	1		0	1	0	0		0	1	0	0
	1	1	0		0	1	1	1		0	1	1	0
			I		1	0	0	0		1	0	0	1
					1	0	1	0		1	0	1	0
					1	1	0	1		1	1	0	1
					1	1	1	0		1	1	1	1

- 4. Classify each of the following statements as true, false, or not a valid mathematical statement. Explain your answer.
 - (a) An integer is a rational number.
 - (b) Let x be a real number.
 - (c) 4 = 2 + 2 and $7 < \sqrt{50}$.
 - (d) 5 is an even integer and $16^{-1/4} = 1/2$.
 - (e) 5 is an even integer or $16^{-1/4} = 1/2$.
 - (f) $4 \neq 2 + 2 \implies 7 < \sqrt{50}$.
 - (g) $4 = 2 + 2 \implies 7 > \sqrt{50}$.
- 5. Write down the negation of each of the following statements in clear and concise English. Do not use the expression "It is not the case that" in your answers.
 - (a) Either $a^2 > 0$ or a is not a real number.
 - (b) Every integer is divisible by a prime.
 - (c) For every real number x, there is an integer n such that n > x.
 - (d) There exists a planar graph that cannot be colored with at most four colors.
 - (e) For all integers a and b, there exist integers q and r such that b = qa + r.

- 6. Write down the converse and the contrapositive of each of the following implications.
 - (a) If $\frac{a}{b}$ and $\frac{b}{c}$ are integers, then $\frac{a}{c}$ is an integer.
 - (b) If $x^2 = x + 1$, then $x = (1 + \sqrt{5})/2$ or $x = (1 \sqrt{5})/2$.
 - (c) If n is an odd integer, then $n^2 + n 2$ is an even integer.
 - (d) If p(x) is a polynomial of odd degree, then p(x) has at least one real root.
- 7. Which of the following is a tautology, a contradiction, or neither? (See page Lo-2 for the definitions of tautology and contradiction.)
 - (a) $(p \land q) \lor (\sim (p \land q))$
 - (b) $(p \land q \land r) \lor (p \land q \land (\sim r)) \lor (\sim (p \land q))$
 - (c) $(p \lor q \lor r) \land (p \lor (\sim r)) \land (\sim p) \land (\sim q).$
- 8. Given:
 - Predicates I(x) = x is wise and E(x, y) = x knows y, and a
 - domain $P = \{a, b, c\}$, and
 - the truth set of I(x) is $\{a\}$, and
 - the truth set of E(x, y) is $\{(a, a), (b, b), (c, c), (a, c), (a, b)\}$. [Remember that the truth set of a predicate is the set of elements in the domain that make the predicate a true statement.]

Answer the following questions:

- (a) Is the statement $(\forall x \in P)(\exists y \in P) : I(y) \implies E(x, x)$ true?
- (b) Is the statement $(\exists y \in P) : (\forall x \in P) \sim E(x, y) \lor \sim I(x)$ true?
- (c) What is the opposite (in colloquial English) of "everyone who is wise knows themselves"?
- (d) Convert the following from predicate logic to colloquial English: $\exists x \in P \forall y \in P : E(x, y \implies I(y).$
- (e) Convert the following from English to predicate logic: "anyone who knows everybody is wise."