Exercises for practice: Do the following exercises from the text:
Section NT-1 (page 60): 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.13, 1.14, 1.15, 1.17.
Section NT-2 (page 76): 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8.
These exercises have (as do all the exercises from the text) solutions in the Solutions section.

Exercises to turn in from the number theory handout:

From Pages 9-10:

1. By using the Euclidean algorithm find the greatest common divisor (g.c.d.) of
(a) 7469 and 2464;

- Solution. Using the division algorithm repeatedly gives:

$$
\begin{aligned}
7469 & =2464 \cdot 3+77 \\
2464 & =77 \cdot 32+0
\end{aligned}
$$

Hence the greatest common divisor is $(7469,2464)=77$.
(c) 2947 and 3997 ;

- Solution. Using the division algorithm repeatedly gives:

$$
\begin{aligned}
3997 & =1 \cdot 2947+1050 \\
2947 & =2 \cdot 1050+847 \\
1050 & =1 \cdot 847+203 \\
847 & =4 \cdot 203+35 \\
203 & =5 \cdot 35+28 \\
35 & =1 \cdot 28+7 \\
28 & =4 \cdot 7+0 .
\end{aligned}
$$

Hence the greatest common divisor is $(3997,2947)=7$.
2. Find the greatest common divisor g of the numbers 1819 and 3587 , and then find integers x and y to satisfy $1819 x+3587 y=g$.

- Solution. Use the Euclidean algorithm to find g :

$$
\begin{aligned}
3587 & =1819 \cdot 1+1768 \\
1819 & =1768 \cdot 1+51 \\
1768 & =51 \cdot 34+34 \\
51 & =34 \cdot 1+17 \\
34 & =17 \cdot 2+0 .
\end{aligned}
$$

Hence the greatest common divisor is $g=(3587,1819)=17$. To find x and y reverse the chain of equalities used in the Euclidean algorithm:

$$
\begin{aligned}
17 & =51-34 \cdot 1 \\
& =51-(1768-51 \cdot 34) \\
& =51 \cdot 35-1768 \\
& =(1819-1768) \cdot 35-1768 \\
& =1819 \cdot 35-1768 \cdot 36 \\
& =1819 \cdot 35-(3587-1819) \cdot 36 \\
& =1819 \cdot 71-3587 \cdot 36 .
\end{aligned}
$$

Thus, we have written $g=17=1819 \cdot 71-3587 \cdot 36=1819 x+3587 y$, where $x=71$ and $y=-36$.
3. Find values of x and y to satisfy
(a) $243 x+198 y=9$;

- Solution. Start by find the greatest common divisor of 243 and 198 via the Euclidean algorithm:

$$
\begin{aligned}
243 & =198 \cdot 1+45 \\
198 & =45 \cdot 4+18 \\
45 & =18 \cdot 2+9
\end{aligned}
$$

Since 9 divides 18, it follows that 9 is the greatest common divisor of 243 and 198. Now reverse the steps to write 9 as a combination of 243 and 198:

$$
\begin{aligned}
9 & =45-18 \cdot 2 \\
& =45-(198-45 \cdot 4) \cdot 2 \\
& =45 \cdot 9-198 \cdot 2 \\
& =(243-198) \cdot 9-198 \cdot 2 \\
& =243 \cdot 9-198 \cdot 11 .
\end{aligned}
$$

Hence $9=243 x+198 y$ where $x=9$ and $y=-11$.
(c) $43 x+64 y=1$.

- Solution. Use the Euclidean algorithm:

$$
\begin{aligned}
& 64=43+21 \\
& 43=21 \cdot 2+1
\end{aligned}
$$

Thus

$$
\begin{aligned}
1 & =43-21 \cdot 2 \\
& =43-(64-43) \cdot 2 \\
& =43 \cdot 3-64 \cdot 2 .
\end{aligned}
$$

Hence, if $x=3$ and $y=-2$, we have $1=43 x+64 y$.
10. Given $a \mid b$ and $c \mid d$ prove that $a c \mid b d$.

Proof. Assuming that $a \mid b$ and $c \mid d$ means that we can write $b=a x$ and $d=c y$ where x and y are integers. Then $b d=(a x)(c y)=(a c)(x y)$. Since $x y$ is an integer (because the product of integers is an integer) we have that $b d=(a c) w$ where w is an integer. This is what is means for $a c$ to divide $b d$.
12. Given that $(a, 4)=2$ and $(b, 4)=2$, prove that $(a+b, 4)=4$.

Proof. Since the positive divisors of 4 are 1, 2, and 4, the fact that $(a, 4)=2$ means that $2 \mid a$, but 4 does not divide a. Hence we can write $a=2 k$ where k is not divisible by 2 , that is k is odd so that $a=2(2 m+1)$. Similarly, the fact that ($b, 4)=2$ means that $b=2(2 n+1)$. Then, $a+b=2(2 m+1)+2(2 n+1)=2(2 m+2 n+2)=4(m+n+1)$ so that $4 \mid(a+b)$ and hence $(a+b, 4)=4$ since there cannot be a divisor of 4 larger than 4.
21. Prove that if an integer is of the form $6 k+5$ then it is necessarily of the form $3 k-1$, but not conversely.

Proof. Let n be an integer of the form $6 k+5$. This means that we can write $n=6 k+5$ for some choice of the integer k. Since $6=5-1$, we can then write $n=6 k+5=$ $6 k+6-1=6(k+1)-1=3(2(k+1))-1=3 r-1$. That is, if $n=6 k+5$, then we can also write n as 3 times an integer (namely $2(k+1)$) minus 1 , which is what is required for n to have the form $3 k+1$. (Note that the same k is not used in both representations.)

The converse statement is not true, since 2 is an integer that can be written in the form $3 k-1$ (using $k=1$), but 2 cannot be written in the form $6 k+5$ for any choice of k since if $6 k+5=2$ this requires that $6 k=-3$ for some integer k. But $k=-1 / 2$ is not an integer.

From Page 18:
16. If $(a, b)=p$, a prime, what are the possible values of $\left(a^{2}, b\right)$? of $\left(a^{3}, b\right)$? of $\left(a^{2}, b^{3}\right)$?

- Solution. Since $(a, b)=p$ we can write $a=p r$ and $b=p s$ where r and s are integers such that $(r, s)=1$. Then $a^{2}=p^{2} r^{2}$. Then by Theorem 1.7, $\left(a^{2}, b\right)=\left(p^{2} r^{2}, p s\right)=$ $p\left(p r^{2}, s\right)$. By Theorem 1.8, $\left(r^{2}, s\right)=1$. Thus, there are two cases to consider: if $p \mid s$ then $\left(a^{2}, b\right)=p^{2}$, and if $p \nmid s$ then $\left(p r^{2}, s\right)=1$ (again by Theorem 1.8) so that $\left(a^{2}, b\right)=p$ in that case. Thus, there are two cases for $\left(a^{2}, b\right)$: namely p or p^{2}. The same analysis shows that $\left(a^{3}, b\right)$ must be either p, p^{2}, or p^{3}, depending on the power of p that divides b. Analyze $\left(a^{2}, b^{3}\right)$ as follows. Using the notation already introduced, and Theorem 1.7, we get $\left(a^{2}, b^{3}\right)=\left(p^{2} r^{2}, p^{3} s^{3}\right)=p^{2}\left(r^{2}, p s^{3}\right)$. Since $(r, s)=1$, Theorem 1.8 shows that $\left(r^{2}, s^{3}\right)=1$. Thus, there are two possibilities for $\left(a^{2}, b^{3}\right)$:

$$
\begin{cases}\left(a^{2}, b^{3}\right)=p^{2} & \text { if } p \nmid r, \\ \left(a^{2}, b^{3}\right)=p^{3} & \text { if } p \mid r .\end{cases}
$$

18. If a and b are represented by (1.6), what conditions must be satisfied by the exponents is a is to be a perfect square? A perfect cube? For $a \mid b$? For $a^{2} \mid b^{2}$?

- Solution. Using the notation of equation (1.6), a is a perfect square if each of the exponents α_{j} is even, a is a perfect cube if each of the exponents α_{j} is a multiple of $3, a \mid b$ if and only if $\alpha_{j} \leq \beta_{j}$ for each j, and the same condition is necessary for a^{2} to divide b^{2}.

24. Determine whether the following statements are true or false. If true, prove the result, and if false, give a counterexample.
(1) If $(a, b)=(a, c)$, then $[a, b]=[a, c]$.

- Solution. False. Counterexample: $a=2, b=3, c=5$. Then $(a, b)=$ $(a, c)=1$ but $[a, b]=6 \neq 10=[a, c]$.
(2) If $(a, b)=(a, c)$ then $\left(a^{2}, b^{2}\right)=\left(a^{2}, c^{2}\right)$.

- Solution. True.

Proof. Suppose first that r and s are integers such that $(r, s)=1$. Then by Theorem 1.8 (Page 6) (letting $a=r, b=r$ and $m=s$) it follows that $\left(r^{2}, s\right)=1$ and applying this result a second time (with $a=b=s, m=r^{2}$) gives $\left(r^{2}, s^{2}\right)=1$, so that $(r, s)=\left(r^{2}, s^{2}\right)$ if $(r, s)=1$.
Now suppose that $(a, b)=d$ and let $r=a / d, s=b / d$. Then by Theorem 1.7 (Page 6) we get that $(r, s)=(a, b) / d=1$ so that we can apply the previous paragraph (and Theorem 1.6) to get

$$
\left(a^{2}, b^{2}\right)=\left(d^{2} r^{2}, d^{2} s^{2}\right)=d^{2}\left(r^{2}, s^{2}\right)=d^{2}=(a, b)^{2} .
$$

Assuming that $(a, b)=(a, c)$ we get

$$
\left(a^{2}, b^{2}\right)=(a, b)^{2}=(a, c)^{2}=\left(a^{2}, c^{2}\right)
$$

This can also be proved using the factorization into primes given by formula (1.6) (Page 15).
(3) If $(a, b)=(a, c)$ then $(a, b)=(a, b, c)$.

- Solution. True.

Proof. Suppose $d=(a, b)$. Then $d|a, d| b$, and since we are assuming that $d=$ $(a, b)=(a, c)$ it follows that $d \mid c$. Thus d is a common divisor of a, b, and c so $d \leq(a, b, c)$. But if e is any common divisor of a, b, and c, then certainly e is a common divisor of a and b so that $e \leq d=(a, b)$. Hence, if we take e to be the common divisor (a, b, c) we have that $(a, b, c) \leq d$. Hence, $(a, b)=d=$ (a, b, c).
(4) If p is a prime and $p \mid a$ and $p \mid\left(a^{2}+b^{2}\right)$ then $p \mid b$.

- Solution. True. If $p \mid a$ then $p \mid a^{2}$. If p also divides $a^{2}+b^{2}$ then p divides $\left(a^{2}+b^{2}\right)-a^{2}=b^{2}$. By Theorem 1.15, if $p \mid b^{2}$ then $p \mid b$.
(5) If p is a prime and $p \mid a^{7}$, then $p \mid a$.
- Solution. True. This follows directly from Theorem 1.15.
(6) If $a^{3} \mid c^{3}$, then $a \mid c$.
- Solution. Writing a and c in the form of formula (1.6) gives

$$
a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}, \quad \text { and } \quad c=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{r}^{\beta_{r}},
$$

so that

$$
a^{3}=p_{1}^{3 \alpha_{1}} p_{2}^{3 \alpha_{2}} \cdots p_{r}^{3 \alpha_{r}}, \quad \text { and } \quad c^{3}=p_{1}^{3 \beta_{1}} p_{2}^{3 \beta_{2}} \cdots p_{r}^{3 \beta_{r}}
$$

Thus $a^{3} \mid c^{3}$ if and only if $3 \alpha_{j} \leq 3 \beta_{j}$ for $j=1,2, \ldots, r$, and this is true if and only if $\alpha_{j} \leq \beta_{j}$ for $j=1,2, \ldots, r$, which is true if and only if $a \mid c$.
(7) if $a^{3} \mid c^{2}$ then $a \mid c$.

- Solution. True. In the notation of part (6), $a^{3} \mid c^{2}$ if and only if $3 \alpha_{j} \leq 2 \beta_{j}$ for all j, and this is true if and only if $\alpha_{j} \leq(2 / 3) \beta_{j}<\beta_{j}$. But this is precisely the condition that guarantees that $a \mid c$.
(8) If $a^{2} \mid c^{3}$, then $a \mid c$.
- Solution. False. A counterexample is $a=8, c=4$. Then $a^{2}=64=c^{3}$ but $8 \nmid 4$.

