Exercises to turn in:

- 1. In each case determine whether the statement is true or false. (A calculator will be useful for the larger numbers.)
 - (a) $40 \equiv 13 \pmod{9}$ (b) $-29 \equiv 1 \pmod{7}$
 - (c) $8 \equiv 48 \pmod{14}$ (d) $-8 \equiv 48 \pmod{14}$
 - (e) $7754 \equiv 357482 \pmod{3643}$ (f) $4015 \equiv 33303 \pmod{1295}$

Answers:

- (a) **True**: $40 13 = 27 = 9 \cdot 3$ so $40 \equiv 13 \pmod{9}$.
- (b) **False**: -29 1 = -30 and $7 \nmid -30$ so $-29 \not\equiv 1 \pmod{7}$.
- (c) **False**: 8 48 = -40 and $14 \nmid -40$, so $8 \not\equiv 48 \pmod{14}$.
- (d) **True**: $-8 48 = -56 = 14 \cdot 4$ so $-8 \equiv 48 \pmod{14}$.
- (e) **True**: $357482 7754 = 349728 = 3643 \cdot 96$ so $7754 \equiv 357482 \pmod{3643}$.
- (f) **False**: $33303 4015 = 29288 = 22 \cdot 1295 + 798$ so $1295 \nmid 33303 4015$ and hence $4015 \not\equiv 33303 \pmod{1295}$

2. In each case find all integers k making the statement true.

- (a) $4 \equiv 2k \pmod{7}$ (b) $12 \equiv 3k \pmod{10}$
- (c) $3k \equiv k \pmod{9}$ (d) $5k \equiv k \pmod{15}$

Answers:

- (a) $k \equiv 2 \pmod{7}$, i.e., k = 2 + 7t where $t \in \mathbb{Z}$.
- (b) $k \equiv 4 \pmod{10}$, i.e., k = 4 + 10t where $t \in \mathbb{Z}$.
- (c) $3k \equiv c \pmod{9} \iff 2k \equiv 0 \pmod{9} \iff k \equiv 0 \pmod{9} \iff k \equiv 9t$ for $t \in \mathbb{Z}$.
- (d) $5k \equiv k \pmod{15} \iff 4k \equiv 0 \pmod{15} \iff k \equiv 0 \pmod{15} \iff k = 15t$ for $t \in \mathbb{Z}$.
- 3. Find all incongruent solutions to each of the following congruences.
 - (a) $7x \equiv 3 \pmod{15}$ (b) $6x \equiv 5 \pmod{15}$
 - (c) $3x \equiv 1 \pmod{12}$ (d) $3x \equiv 1 \pmod{11}$

 (e) $15x \equiv 5 \pmod{17}$ (f) $5x \equiv 5 \pmod{18}$
 - (c) 100 ± 0 (mod 17) (c) $x^2 \equiv 1 \pmod{8}$ (c) $x^2 \equiv 3 \pmod{7}$

Answers:

(a) Since gcd(7, 15) = 1 any two solutions are congruent mod 15 (Theorem 8.1, Page 57 of the Congruence Supplement). To find this solution, start with $15 - 7 \cdot 2 = 1$ and multiply by 3 to get $3 \cdot 15 + 7 \cdot (-6) = 3$. Hence x = -6 is one solution to $7x \equiv 3 \pmod{15}$ and all other solutions are of the form -6 + 15k for $k \in \mathbb{Z}$. Note that the smallest positive solution is -6 + 15 = 9. Check: $7 \cdot 9 = 63 \equiv 3 \pmod{15}$.

- (b) Since gcd(6, 15) = 3 and $3 \nmid 5$, Part (a) of Theorem 8.1 shows that there are no solutions to $6x \equiv 5 \pmod{15}$.
- (c) Since gcd(3, 12) = 3 and $3 \nmid 1$, there are no solutions to $3x \equiv 1 \pmod{12}$.
- (d) Since gcd(3, 11) = 1 there is exactly one solution modulo 11, and by inspection $4 \cdot 3 \equiv 1 \pmod{11}$. Hence $x \equiv 4 \pmod{11}$.
- (e) Since gcd(15, 17) = 1 there is exactly one solution modulo 17. To find it, start by using the Euclidean Algorithm to write 17r + 15s = 1:

$$\begin{array}{rcl} 17 & = & 15 + 12 \\ 15 & = & 2 \cdot 7 + 1, \end{array}$$

so reversing these two steps gives:

$$1 = 15 - 7 \cdot 2$$

= 15 - 7(17 - 15)
= 8 \cdot 15 - 7 \cdot 17.

This last equation gives $15 \cdot 8 \equiv 1 \pmod{17}$ and multiplication by 5 gives $15 \cdot 40 \equiv 5 \pmod{17}$. Hence the solutions of the congruence are $x \equiv 40 \pmod{17}$. The smallest positive solution is $6 = 40 - 2 \cdot 17$. *Check:* $15 \cdot 6 = 90 = 17 \cdot 5 + 5$ so $15 \cdot 6 \equiv 5 \pmod{17}$.

- (f) Since gcd(5, 18) = 1, there is only one solution modulo 18, and that solution is found by inspection to be x = 1. Thus all solutions are $x \equiv 1 \pmod{18}$.
- (g) There are only 8 congruence classes modulo 8, so just compute the squares of each to see which are 1 modulo 8:

x	$\pmod{8}$	0	1	2	3	4	5	6	7
x^2	$\pmod{8}$	0	1	4	1	0	1	4	1

Thus, the solutions to $x^2 \equiv 1 \pmod{8}$ are $x \equiv k \pmod{8}$ where k = 1, 3, 5, 7.

(h) There are only 7 congruence classes modulo 7, so just compute the squares of each to see which are 3 modulo 7:

$x \pmod{7}$	') 0	1	2	3	4	5	6
$x^2 \pmod{x}$	7) 0	1	4	2	2	4	1

Thus, there are no solutions to $x^2 \equiv 3 \pmod{7}$.

- 4. Determine the number of incongruent solutions for each of the following congruences. You need not write down the actual solutions.
 - (a) $72x \equiv 47 \pmod{200}$

▶ Solution. gcd(72, 200) = 8 so there are exactly 8 incongruent solutions. (Theorem 8.1, Part (b)).

(b) $1537x \equiv 2862 \pmod{6731}$

▶ Solution. Using the Euclidean Algorithm (or a prime factorization table) one finds that gcd(1537, 6731) = 53, so there are exactly 53 incongruent solutions to the linear congruence $1537x \equiv 2862 \pmod{6731}$.

- 5. If $a \in \mathbb{Z}$ and n > 1 then a *multiplicative inverse of a mod* n is a solution of the congruence $ax \equiv 1 \pmod{n}$.
 - (a) Explain how Theorem 8.1 (Page 57) of the handout shows that a has a multiplicative inverse mod n if and only if the greatest common divisor (a, n) = 1. Note that this theorem also shows you explicitly how to find the multiplicative inverse of $a \mod n$, when it exists.

▶ Solution. The theorem states that the congruence $ax \equiv c \pmod{n}$ has a solution if (Part (b)) and only if (Part (a)) the greatest common divisor g of a and n divides c. But if c = 1, the only possible divisors of c are ± 1 . Thus g|1 if and only if g = 1.

(b) Find the inverse of 13 mod 35.

▶ Solution. Use the Euclidean Algorithm to write $1 = 3 \cdot 35 - 8 \cdot 13$. This equation says that $-8 \cdot 13 \equiv 1 \pmod{35}$, so the multiplicative inverse of 13 modulo 35 is -8. Since $-8 \equiv 27 \pmod{35}$, an equivalent answer is 27.

(c) Find the inverse of 9 mod 16.

▶ Solution. Since $1 = 9 \cdot 9 - 5 \cdot 16$, the multiplicative inverse of 9 modulo 16 is 9 (mod 16). That is, 9 is its own inverse modulo 16.

6. Let $n = d_k d_{k-1} \cdots d_2 d_1 d_0$ be the decimal representation of n. Recall that this means that

$$n = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_2 10^2 + d_1 10 + d_0,$$

and each d_j is an integer between 0 and 9.

(a) Show that 3|n if and only if $3|(d_0 + d_1 + \cdots + d_k)$.

Proof. Since $10 \equiv 1 \pmod{3}$, it follows (Page 53, Congruence Supplement) that $10^j \equiv 1 \pmod{3}$ for all positive integers j. Then, assuming that $n = d_k d_{k-1} \cdots d_2 d_1 d_0$ is the decimal representation of n, it follows (by substituting for the congruence $10^j \equiv 1 \pmod{3}$ for $1 \leq j \leq k$ that

$$n = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_2 10^2 + d_1 10 + d_0$$

$$\equiv d_k + d_{k-1} + \dots + d_2 + d_1 + d_0 \pmod{3}.$$

Thus, we have shown that if $n = d_k d_{k-1} \cdots d_2 d_1 d_0$ is the decimal representation of n, then

$$n \equiv d_k + d_{k-1} + \dots + d_2 + d_1 + d_0 \pmod{3},$$

that is, n is congruence modulo 3 to the sum of its decimal digits. Since 3|n if and only if $n \equiv 0 \pmod{3}$, it follows that 3|n if and only if $3|(d_k + d_{k-1} + \cdots + d_2 + d_1 + d_0)$ since both n and $d_k + d_{k-1} + \cdots + d_2 + d_1 + d_0$ have the same remainder upon division by 3.

(b) Show that 11|n if and only if $11|(d_0 - d_1 + d_2 - d_3 + \cdots \pm d_k)$.

Proof. Since $10 \equiv -1 \pmod{11}$, it follows (Page 53, Congruence Supplement) that $10^j \equiv (-1)^j \pmod{11}$ for all positive integers j. Then, assuming that $n = d_k d_{k-1} \cdots d_2 d_1 d_0$ is the decimal representation of n, it follows (by substituting for the congruence $10^j \equiv (-1)^j \pmod{11}$ for $1 \leq j \leq k$ that

$$n = d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_2 10^2 + d_1 10 + d_0$$

$$\equiv (-1)^k d_k + (-1)^{k-1} d_{k-1} + \dots + d_2 - d_1 + d_0 \pmod{11}.$$

Thus, we have shown that if $n = d_k d_{k-1} \cdots d_2 d_1 d_0$ is the decimal representation of n, then

$$n \equiv (-1)^k d_k + (-1)^{k-1} d_{k-1} + \dots + d_2 - d_1 + d_0 \pmod{11},$$

that is, n is congruence modulo 11 to the alternating sum of its decimal digits. Since 11|n if and only if $n \equiv 0 \pmod{11}$, it follows that 11|n if and only if $11|((-1)^k d_k + (-1)^{k-1} d_{k-1} + \cdots + d_2 - d_1 + d_0)$ since both n and $(-1)^k d_k + (-1)^{k-1} d_{k-1} + \cdots + d_2 - d_1 + d_0$ have the same remainder upon division by 11. \Box

Hint: Use the congruences $10 \equiv 1 \pmod{3}$ and $10 \equiv -1 \pmod{11}$ and the rules of congruence arithmetic on Page 53 of the handout.