
Exercise Set 4 Math 2020 Due: March 20, 2007

Exercises to turn in:

1. In each case determine whether the statement is true or false. (A calculator will be
useful for the larger numbers.)

(a) 40 ≡ 13 (mod 9) (b) −29 ≡ 1 (mod 7)
(c) 8 ≡ 48 (mod 14) (d) −8 ≡ 48 (mod 14)
(e) 7754 ≡ 357482 (mod 3643) (f) 4015 ≡ 33303 (mod 1295)

Answers:

(a) True: 40− 13 = 27 = 9 · 3 so 40 ≡ 13 (mod 9).

(b) False: −29− 1 = −30 and 7 - −30 so −29 6≡ 1 (mod 7).

(c) False: 8− 48 = −40 and 14 - −40, so 8 6≡ 48 (mod 14).

(d) True: −8− 48 = −56 = 14 · 4 so −8 ≡ 48 (mod 14).

(e) True: 357482− 7754 = 349728 = 3643 · 96 so 7754 ≡ 357482 (mod 3643).

(f) False: 33303− 4015 = 29288 = 22 · 1295 + 798 so 1295 - 33303− 4015 and hence
4015 6≡ 33303 (mod 1295)

2. In each case find all integers k making the statement true.

(a) 4 ≡ 2k (mod 7) (b) 12 ≡ 3k (mod 10)
(c) 3k ≡ k (mod 9) (d) 5k ≡ k (mod 15)

Answers:

(a) k ≡ 2 (mod 7), i.e., k = 2 + 7t where t ∈ Z.

(b) k ≡ 4 (mod 10), i.e., k = 4 + 10t where t ∈ Z.

(c) 3k ≡ c (mod 9) ⇐⇒ 2k ≡ 0 (mod 9) ⇐⇒ k ≡ 0 (mod 9) ⇐⇒ k = 9t for
t ∈ Z.

(d) 5k ≡ k (mod 15) ⇐⇒ 4k ≡ 0 (mod 15) ⇐⇒ k ≡ 0 (mod 15) ⇐⇒ k = 15t
for t ∈ Z.

3. Find all incongruent solutions to each of the following congruences.

(a) 7x ≡ 3 (mod 15) (b) 6x ≡ 5 (mod 15)
(c) 3x ≡ 1 (mod 12) (d) 3x ≡ 1 (mod 11)
(e) 15x ≡ 5 (mod 17) (f) 5x ≡ 5 (mod 18)
(g) x2 ≡ 1 (mod 8) (h) x2 ≡ 3 (mod 7)

Answers:

(a) Since gcd(7, 15) = 1 any two solutions are congruent mod 15 (Theorem 8.1, Page
57 of the Congruence Supplement). To find this solution, start with 15− 7 · 2 = 1
and multiply by 3 to get 3 · 15 + 7 · (−6) = 3. Hence x = −6 is one solution
to 7x ≡ 3 (mod 15) and all other solutions are of the form −6 + 15k for k ∈ Z.
Note that the smallest positive solution is −6 + 15 = 9. Check: 7 · 9 = 63 ≡ 3
(mod 15).
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(b) Since gcd(6, 15) = 3 and 3 - 5, Part (a) of Theorem 8.1 shows that there are no
solutions to 6x ≡ 5 (mod 15).

(c) Since gcd(3, 12) = 3 and 3 - 1, there are no solutions to 3x ≡ 1 (mod 12).

(d) Since gcd(3, 11) = 1 there is exactly one solution modulo 11, and by inspection
4 · 3 ≡ 1 (mod 11). Hence x ≡ 4 (mod 11).

(e) Since gcd(15, 17) = 1 there is exactly one solution modulo 17. To find it, start
by using the Euclidean Algorithm to write 17r + 15s = 1:

17 = 15 + 12

15 = 2 · 7 + 1,

so reversing these two steps gives:

1 = 15− 7 · 2
= 15− 7(17− 15)

= 8 · 15− 7 · 17.

This last equation gives 15·8 ≡ 1 (mod 17) and multiplication by 5 gives 15·40 ≡ 5
(mod 17). Hence the solutions of the congruence are x ≡ 40 (mod 17). The
smallest positive solution is 6 = 40 − 2 · 17. Check: 15 · 6 = 90 = 17 · 5 + 5 so
15 · 6 ≡ 5 (mod 17).

(f) Since gcd(5, 18) = 1, there is only one solution modulo 18, and that solution is
found by inspection to be x = 1. Thus all solutions are x ≡ 1 (mod 18).

(g) There are only 8 congruence classes modulo 8, so just compute the squares of each
to see which are 1 modulo 8:

x (mod 8) 0 1 2 3 4 5 6 7
x2 (mod 8) 0 1 4 1 0 1 4 1

Thus, the solutions to x2 ≡ 1 (mod 8) are x ≡ k (mod 8) where k = 1, 3, 5, 7.

(h) There are only 7 congruence classes modulo 7, so just compute the squares of each
to see which are 3 modulo 7:

x (mod 7) 0 1 2 3 4 5 6
x2 (mod 7) 0 1 4 2 2 4 1

Thus, there are no solutions to x2 ≡ 3 (mod 7).

4. Determine the number of incongruent solutions for each of the following congruences.
You need not write down the actual solutions.

(a) 72x ≡ 47 (mod 200)

I Solution. gcd(72, 200) = 8 so there are exactly 8 incongruent solutions. (The-
orem 8.1, Part (b)). J
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(b) 1537x ≡ 2862 (mod 6731)

I Solution. Using the Euclidean Algorithm (or a prime factorization table) one
finds that gcd(1537, 6731) = 53, so there are exactly 53 incongruent solutions to
the linear congruence 1537x ≡ 2862 (mod 6731). J

5. If a ∈ Z and n > 1 then a multiplicative inverse of a mod n is a solution of the
congruence ax ≡ 1 (mod n).

(a) Explain how Theorem 8.1 (Page 57) of the handout shows that a has a multiplica-
tive inverse mod n if and only if the greatest common divisor (a, n) = 1. Note
that this theorem also shows you explicitly how to find the multiplicative inverse
of a mod n, when it exists.

I Solution. The theorem states that the congruence ax ≡ c (mod n) has a
solution if (Part (b)) and only if (Part (a)) the greatest common divisor g of a
and n divides c. But if c = 1, the only possible divisors of c are ±1. Thus g|1 if
and only if g = 1. J

(b) Find the inverse of 13 mod 35.

I Solution. Use the Euclidean Algorithm to write 1 = 3·35−8·13. This equation
says that −8 · 13 ≡ 1 (mod 35), so the multiplicative inverse of 13 modulo 35 is
−8. Since −8 ≡ 27 (mod 35), an equivalent answer is 27. J

(c) Find the inverse of 9 mod 16.

I Solution. Since 1 = 9 · 9− 5 · 16, the multiplicative inverse of 9 modulo 16 is
9 (mod 16). That is, 9 is its own inverse modulo 16. J

6. Let n = dkdk−1 · · · d2d1d0 be the decimal representation of n. Recall that this means
that

n = dk10k + dk−110k−1 + · · ·+ d2102 + d110 + d0,

and each dj is an integer between 0 and 9.

(a) Show that 3|n if and only if 3|(d0 + d1 + · · ·+ dk).

Proof. Since 10 ≡ 1 (mod 3), it follows (Page 53, Congruence Supplement) that
10j ≡ 1 (mod 3) for all positive integers j. Then, assuming that n = dkdk−1 · · · d2d1d0

is the decimal representation of n, it follows (by substituting for the congruence
10j ≡ 1 (mod 3) for 1 ≤ j ≤ k that

n = dk10k + dk−110k−1 + · · ·+ d2102 + d110 + d0

≡ dk + dk−1 + · · ·+ d2 + d1 + d0 (mod 3).

Thus, we have shown that if n = dkdk−1 · · · d2d1d0 is the decimal representation
of n, then

n ≡ dk + dk−1 + · · ·+ d2 + d1 + d0 (mod 3),
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that is, n is congruence modulo 3 to the sum of its decimal digits. Since 3|n if and
only if n ≡ 0 (mod 3), it follows that 3|n if and only if 3|(dk + dk−1 + · · ·+ d2 +
d1 + d0) since both n and dk + dk−1 + · · ·+ d2 + d1 + d0 have the same remainder
upon division by 3.

(b) Show that 11|n if and only if 11|(d0 − d1 + d2 − d3 + · · · ± dk).

Proof. Since 10 ≡ −1 (mod 11), it follows (Page 53, Congruence Supplement)
that 10j ≡ (−1)j (mod 11) for all positive integers j. Then, assuming that n =
dkdk−1 · · · d2d1d0 is the decimal representation of n, it follows (by substituting for
the congruence 10j ≡ (−1)j (mod 11) for 1 ≤ j ≤ k that

n = dk10k + dk−110k−1 + · · ·+ d2102 + d110 + d0

≡ (−1)kdk + (−1)k−1dk−1 + · · ·+ d2 − d1 + d0 (mod 11).

Thus, we have shown that if n = dkdk−1 · · · d2d1d0 is the decimal representation
of n, then

n ≡ (−1)kdk + (−1)k−1dk−1 + · · ·+ d2 − d1 + d0 (mod 11),

that is, n is congruence modulo 11 to the alternating sum of its decimal digits.
Since 11|n if and only if n ≡ 0 (mod 11), it follows that 11|n if and only if
11|((−1)kdk + (−1)k−1dk−1 + · · · + d2 − d1 + d0) since both n and (−1)kdk +
(−1)k−1dk−1 + · · ·+d2−d1 +d0 have the same remainder upon division by 11.

Hint: Use the congruences 10 ≡ 1 (mod 3) and 10 ≡ −1 (mod 11) and the rules of
congruence arithmetic on Page 53 of the handout.
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