- 1. Let $\mathbf{F}(x, y) = xy\mathbf{i} + (y 3x)\mathbf{j}$, and let C be the curve $\mathbf{r}(t) = t\mathbf{i} + (3t t^2)\mathbf{j}$ for $0 \le t \le 2$. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 2. Evaluate the line integral $\int_C \frac{x^3}{y} ds$, where C is the portion of the graph $y = x^2/2$ for $0 \le x \le 2$.
- 3. Let $\mathbf{F}(x, y) = (ax^2y + y^3 + 1)\mathbf{i} + (2x^3 + bxy^2 + 2)\mathbf{j}$ be a vector field, where a and b are constants.
 - (a) Find the values and a and b for which \mathbf{F} is conservative.
 - (b) For these values of a and b, find f(x, y) such that $\mathbf{F} = \nabla f$.
 - (c) Still using the values of a and b from part (a), compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve C such that $x = e^t \cos t$, $y = e^t \sin t$, $0 \le t \le \pi$.
- 4. Let $\mathbf{F}(x, y, z) = (\cos x + 2y^2 + 5yz)\mathbf{i} + (4xy + 5xz)\mathbf{j} + (5xy + 3z^2)\mathbf{k}$ on \mathbb{R}^3 . Show that **F** is conservative, and find a potential function for **F**.
- 5. Verify that the vector field $\mathbf{F}(x, y) = (y^2 y \cos x)\mathbf{i} + (2xy \sin x + 1)\mathbf{j}$ is conservative. Then compute $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve $x = t^3 - t$, $y = 1 + t^2$, $1 \le t \le 2$.
- 6. Let C be the circle $x^2 + y^2 = 100$, oriented counterclockwise. Find

$$\int_C (2xy + e^x) \, dx + (x^2 - \sin y + 3x) \, dy.$$

- 7. Let C be the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = \frac{x}{a^2}\mathbf{i} + \frac{y}{b^2}\mathbf{j}$.
- 8. Let C be the positively oriented closed curve formed by the parabola $y = x^2$ running from (-1, 1) to (1, 1) and by a straight line running back from (1, 1) to (-1, 1). Evaluate the line integral

$$\int_C y^2 \, dx + 4xy \, dy$$

in two ways:

- (a) directly, and
- (b) by using Green's theorem.
- 9. Let $\mathbf{F}(x, y, z) = y\mathbf{i} + z\mathbf{j} 2x\mathbf{k}$ and let C be a simple closed curve in the plane x + y + z = 1. Show that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$.
- 10. Let Σ be the unit sphere centered at the origin, with the outward normal orientation, and let $\mathbf{F}(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$. Compute the integral:

$$\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} dS.$$

Hint: Use the divergence theorem.

11. Let f be a scalar field (i.e., function) and \mathbf{F} a vector field. Determine if each of the following expressions is meaningful. If it is meaningful, indicate whether it is a scalar field or a vector field.

Expression	Meaningful	Scalar	Vector
∇f			
div F			
$\operatorname{curl} f$			
$\operatorname{curl}(\nabla f)$			
$\nabla \mathbf{F}$			
$\operatorname{div}(\nabla \mathbf{F})$			