1. Evaluate the following limit or determine that it does not exist:

$$\lim_{(x,y)\to(0,2)} \left(\frac{1}{2xy} - \frac{1}{xy(x+2)}\right).$$

- 2. Show that the function $w = \ln(x^2 + y^2)$ satisfies the two-dimensional Laplace equation $w_{xx} + w_{yy} = 0.$
- 3. Let $f(x, y) = 3xy^2 x y$.
 - (a) Find ∇f at (2, 1).
 - (b) Find the equation of the tangent plane to the graph of f(x, y) at the point (2, 1, 3).
 - (c) Use linear approximation to estimate the value of f(2.1, 0.9).
 - (d) Find the directional derivative of f at (2, 1) in the direction $\mathbf{i} + \mathbf{j}$.
- 4. Let w = f(u, v) where $u = x^2 y^2$ and v = 2xy.
 - (a) Using the chain rule, express

$$\frac{\partial w}{\partial x}$$
 and $\frac{\partial w}{\partial y}$

in terms of x, y, f_u and f_v .

- (b) Assume that w solves the differential equation $uw_u + vw_v = 1$. Find $xw_x + yw_y$.
- 5. Suppose that the equation $x^2yz^3 + xz^2 + z + 2 = 0$ has a differentiable solution for z as a function of x and y. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ at the point (1, 2, -1).
- 6. Let $f(x, y) = -3x^2 4xy y^2 12y + 16x$.
 - (a) Find all the critical points of f(x, y), and determine what type each critical point is.
 - (b) Find the global maximum and minimum of f(x, y) over the triangle with sides x = 0, y = 0 and y + x = 4.
- 7. Use Lagrange Multipliers to find the global maximum and minimum values of $f(x, y) = x^2 + 2y^2 4y$ subject to the constraint $x^2 + y^2 = 9$.