Practice Problems for Exam 2 (Solutions)
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3. Let R be the region in the plane bounded by the graphs of y?> = 4 +z and y?> = 4 — .

(a) Sketch R.
Yy

z=y>—4 r=4—-y
/ R
"

» Solution. <

2

(b) If f(x, y) is an arbitrary continuous function defined on R, express [[,, f(z, y) dA
as an iterated double integral.

//f:):ydA /_2/y2_4 (z, y) dz dy
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4. Compute the following integral:

1 1
/ / sin(z®) dx dy.
o Juw

(Hint: First draw the domain of integration. Then reverse the order of integration.)

» Solution. First draw the domain of integration R:

Then write the curve v = \/y as y = 22 and change the order of integration

1 1 1 x2 1
// sin(x?’)dxdy:// sin(x?’)dydx:/ ysin(x?’)‘zz dx
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1 1
= / x?sin(2?) dv = —= cos(z?)

1
= —(1—cosl).
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5. Compute the following integral:

1 \/ 2—y2
/ / Va2 4+ y?dx dy.
0 Jy

(Hint: First draw the domain of integration. Then use polar coordinates.)

» Solution. First draw the domain of integration R:

Y
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Then R can be expressed in polar coordinates as 0 < 0 < /4, 0 < r < V2. Then
dA = rdr df and

1 \/2—y?
/ / \/x2+y2dxdy:/ Vaz+y?dA
0 Y R
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6. Compute the area of one leaf of the four leaved rose r = asin(26).
» Solution. First draw a picture of one leaf:
Yy
0 | | T
Then the single leaf can be expressed in polar coordinates as 0 < 6 < 5, 0<r<
asin 26, and the area is given by
asin 260 7’2 asin 26
Area = // dA = / / rdrdf —/ 5} do
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7. Compute the volume of the region in the first octant that is bounded by the coordinate
planes and the plane x +y + z = 3.
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» Solution. The region is above the triangular region in the zy-plane bounded by
the axes and the line x + y = 3, and it is below the plane z = 3 — x — y. Thus, the
volume is given by
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8. Compute the volume of the finite region () bounded by the graphs of z = 9 — 22 — ¢/2,
2?2 +1y? =4, and z = 0. Use cylindrical coordinates.

» Solution. The volume of Q) is

o2 2 p9—r2
/// dV:/ // rdzdrdf
Q 0 o Jo
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Zg_rz rdrdf = / (9r — ) drdf
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do :/ 14 do
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9. Let @ be the region bounded below by the cone 2% = 22 + y? and above by the sphere
of radius v/2 and center at the origin. Compute the volume of @ using spherical
coordinates.

» Solution. The cone and the sphere intersect when 22 + 2 = 22 = 2 — 2% — ¢/
so 22 + y?> = 1. In Q the z-coordinate is positive. The cone is defined in spherical
coordinates by ¢ = 7/4 and @ is symmetric around the z-axis. Thus, @ is defined in
spherical coordinates by 0 < p < /2,0 <0 < 27, 0 < ¢ < m/4. Hence, the volume of
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@ is given by the integral

///Q dV:/O% /O%/OﬁPZSiH¢dpd9d¢
:/o% /027T p33 ﬁd@d‘b:%/ / sin ¢ df d¢
0
= (2m) <¥> /O% sin ¢ dgp = <T\[> (= cos )[4

47T
T(Va-1).
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