Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. *Credit will not be given for answers (even correct ones) without supporting work.* Put your name on each page of your paper. A short table of Laplace Transforms and a table of common exact values of trigonometric functions is included on Page 2.

1. [16 Points Each] Solve each of the following initial value problems. Be sure to show all of your work.

(a)
$$y' + \frac{t}{y} = 0$$
, $y(1) = -3$
(b) $y' - 2y = 2e^{5t} + 5e^{2t}$, $y(0) = -3$
(c) $y' - \frac{2}{t}y = 6t^4$, $y(1) = -3$

- 2. [18 Points]
 - (a) State Euler's formula for the complex exponential $e^{i\theta}$:

- (b) Write the complex number $4e^{-i\pi/6}$ in rectangular form x + iy.
- (c) Determine the polar expression $z = re^{i\theta}$ (i.e., find r and θ) for the complex number $z = 1 + \sqrt{3}i$.
- 3. [18 Points] Compute the Laplace transform of each of the following functions.
 - (a) $f(t) = t^3 e^{-9t} + 5$
 - (b) $g(t) = e^{-t} \cos 2t$
 - (c) $h(t) = t^4 e^{-3t}$
- 4. [16 Points] A 400 gallon tank is initially full of brine which contains 60 pounds of salt. A solution containing 0.5 pounds of salt per gallon enters the tank at a rate of 6 gallons per minute. A drain is opened at the bottom of the tank through which the well stirred solution leaves the tank at the same rate of 6 gallons per minute. Let y(t) denote the amount of salt (in pounds) which is in the tank at time t.
 - (a) What is y(0)?
 - (b) Write the differential equation that y(t) must satisfy.
 - (c) Solve the differential equation to find y(t).
 - (d) How much salt is in the tank after 1 hour?

\mathbf{A}	Short Table of Lap	(s) = aF(s) + bG(s) (s) = F(s-a) $(s) = \frac{n!}{s^{n+1}}$ $(s) = \frac{1}{s-a}$ $(s) = \frac{n!}{(s-\alpha)^{n+1}}$				
1.	$\mathcal{L}\left\{af(t) + bg(t)\right\}(s)$	=	aF(s) + bG(s)			
2.	$\mathcal{L}\left\{e^{at}f(t)\right\}(s)$	=	F(s-a)			
3.			0			
4.	$\mathcal{L}\left\{ e^{at}\right\} \left(s\right)$	=	$\frac{1}{s-a}$			
5.	$\mathcal{L}\left\{t^{n}e^{\alpha t}\right\}\left(s\right)$	=	$\frac{n!}{(s-\alpha)^{n+1}}$			
6.	$\mathcal{L}\left\{\cos bt\right\}(s)$	=	$\frac{s}{s^2 + b^2}$			
7.	$\mathcal{L}\left\{\sin bt\right\}(s)$	=	$\frac{b}{s^2 + b^2}$			
8.	$\mathcal{L}\left\{e^{at}\cos bt\right\}(s)$	=	$\frac{s-a}{(s-a)^2+b^2}$			
9.	$\mathcal{L}\left\{e^{at}\sin bt\right\}(s)$	=	$\frac{b}{(s-a)^2 + b^2}$			
			-			

Exam I Supplementary Sheet

Common trigonometric values								
θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$			
$\cos \theta$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0			
$\sin heta$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1			