Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without supporting work. Put your name on each page of your paper.

1. [15 Points] Each of the following matrices is in reduced row echelon form:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & -4 & 0 & 2 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{ccccc}
1 & 5 & 0 & -3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

For each of these matrices, write down all solutions to the linear system of equations that has the given matrix as augmented matrix.
2. [15 Points] Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2\end{array}\right]$.
(a) Compute A^{-1}.
(b) Using your answer to part (a), solve the linear system $A \mathbf{x}=\mathbf{b}$ if $\mathbf{b}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$.
3. [10 Points] Let $C=\left[\begin{array}{cccc}0 & 0 & 5 & 2 \\ 2 & 4 & 6 & 2 \\ 1 & -1 & 6 & 0 \\ 0 & 0 & -3 & 2\end{array}\right]$. Compute $\operatorname{det} C$.
4. [20 Points] Solve the initial value problem: $y^{\prime}+3 y=12 e^{3 t}-3 e^{-3 t}, \quad y(0)=-3$.
5. [20 Points] Solve the initial value problem: $t y^{\prime}+6 y=11 t^{5} \quad y(1)=3$.
6. [20 Points] Solve the initial value problem: $\left(1+t^{2}\right) y^{\prime}=-2 t y^{2}, \quad y(0)=1$.

