Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without supporting work. Put your name on each page of your paper.

1. [15 Points] Each of the following matrices is in reduced row echelon form:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & -4 & 0 & 2 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{ccccc}
1 & 5 & 0 & -3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

For each of these matrices, write down all solutions to the linear system of equations that has the given matrix as augmented matrix.

- Solution. For A : $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}5 \\ 0 \\ -3\end{array}\right]$.

For $B:\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}4 \alpha+2 \\ \alpha \\ -5\end{array}\right]$ where $x_{2}=\alpha$ is arbitrary.
For C : The last row corresponds to the equation $0=1$. Thus the system has no solutions.
2. [15 Points] Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2\end{array}\right]$.
(a) Compute A^{-1}.
-Solution.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & I
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & 3 & 2 & 0 & 1 & 0 \\
3 & 8 & 2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 5 & -1 & -3 & 0 & 1
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & -1 & 7 & -5 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 5 & -1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 1 & 0 & 8 & -5 & 1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 5 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 10 & -6 & 1 \\
0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 1 & -7 & 5 & -1
\end{array}\right]
\end{aligned}
$$

Thus,

$$
A^{-1}=\left[\begin{array}{ccc}
10 & -6 & 1 \\
-2 & 1 & 0 \\
-7 & 5 & -1
\end{array}\right]
$$

(b) Using your answer to part (a), solve the linear system $A \mathbf{x}=\mathbf{b}$ if $\mathbf{b}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$.

- Solution. $\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}10 & -6 & 1 \\ -2 & 1 & 0 \\ -7 & 5 & -1\end{array}\right]\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{c}37 \\ -7 \\ -27\end{array}\right]$.

3. [10 Points] Let $C=\left[\begin{array}{cccc}0 & 0 & 5 & 2 \\ 2 & 4 & 6 & 2 \\ 1 & -1 & 6 & 0 \\ 0 & 0 & -3 & 2\end{array}\right]$. Compute $\operatorname{det} C$.

- Solution. Use cofactor expansion along the first row to get

$$
\begin{aligned}
\operatorname{det} C & =5 \operatorname{det}\left[\begin{array}{ccc}
2 & 4 & 2 \\
1 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]-(2) \operatorname{det}\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & -1 & 6 \\
0 & 0 & -3
\end{array}\right] \\
& =2 \cdot 5 \operatorname{det}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]-(2)(-3) \operatorname{det}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]=16 \operatorname{det}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right] \\
& =16(-2-4)=16(-6)=-96 .
\end{aligned}
$$

4. [20 Points] Solve the initial value problem: $y^{\prime}+3 y=12 e^{3 t}-3 e^{-3 t}, \quad y(0)=-3$.

- Solution. This equation is linear with coefficient function $p(t)=3$ so that an integrating factor is given by $\mu(t)=e^{\int 3 d t}=e^{3 t}$. Multiplication of the differential equation by the integrating factor gives

$$
e^{3 t} y^{\prime}+3 e^{3 t} y=12 e^{6 t}-3
$$

and the left hand side is recognized (by the choice of $\mu(t)$) as a perfect derivative:

$$
\frac{d}{d t}\left(e^{3 t} y\right)=12 e^{6 t}-3
$$

Integration then gives

$$
e^{3 t} y=2 e^{6 t}-3 t+C
$$

where C is an integration constant. Multiplying through by $e^{-3 t}$ gives

$$
y=2 e^{3 t}-3 t+C e^{-3 t}
$$

The initial condition gives $-3=y(0)=2+C$ so $C=-5$ and thus

$$
y=2 e^{3 t}-3 t e^{-3 t}-5 e^{-3 t}
$$

5. [20 Points] Solve the initial value problem: $t y^{\prime}+6 y=11 t^{5} \quad y(1)=3$.

- Solution. This equation is linear. Putting it in standard form gives

$$
y^{\prime}+\frac{6}{t} y=11 t^{4}
$$

Thus, the coefficient function is $p(t)=\frac{6}{t}$, so that an integrating factor is $\mu(t)=$ $e^{\int \frac{6}{t} d t}=e^{6 \ln |t|}=e^{\ln \left(|t|^{6}\right)}=|t|^{6}=t^{6}$. Multiplication of the differential equation (in standard form) by the integrating factor gives

$$
t^{6} y^{\prime}+6 t^{5} y=11 t^{10}
$$

and the left hand side is recognized (by the choice of $\mu(t)$) as a perfect derivative:

$$
\frac{d}{d t}\left(t^{6} y\right)=11 t^{10}
$$

Integration then gives

$$
t^{6} y=t^{11}+C
$$

where C is an integration constant. Multiplying through by t^{-6} gives

$$
y=t^{5}+C t^{-6} .
$$

The initial condition $y(1)=3$ implies $3=y(1)=1+C$ so that $C=2$. Hence

$$
y=t^{5}+2 t^{-6} .
$$

6. [20 Points] Solve the initial value problem: $\left(1+t^{2}\right) y^{\prime}=-2 t y^{2}, \quad y(0)=1$.

- Solution. This equation is separable. There is one equilibrium solution: $y=0$. This does not satisfy the initial condition so it is not the required solution. If $y \neq 0$, separate variables to get $y^{-2} y^{\prime}=\frac{-2 t}{1+t^{2}}$, which in differential form is

$$
y^{-2} d y=\frac{-2 t}{1+t^{2}} d t
$$

and integration then gives

$$
-y^{-1}=-\int \frac{2 t}{1+t^{2}} d t=-\ln \left(1+t^{2}\right)+C
$$

so that

$$
y=\frac{1}{\ln \left(1+t^{2}\right)-C}
$$

The initial condition $y(0)=1$ gives $1=1 /(-C)$ so $C=-1$, and

$$
y=\frac{1}{\ln \left(1+t^{2}\right)+1} .
$$

