Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without supporting work. Put your name on each page of your paper.

1. [8 Points] Short Answer. For True/False questions you must write 'True' or 'False' and justify your answer.
(a) True or False: The differential equation $y^{\prime}=e^{t^{2}+\sin (y)}$ is separable.
(b) True or False: The differential equation $y^{\prime}+y^{2} t=t^{2}$ is first order linear.
(c) What are the possible number of solutions to a system of linear equations?
(d) Let A be a 2015×2015 matrix. If the equation $A \mathbf{x}=\mathbf{0}$ has only the solution $\mathbf{x}=\mathbf{0}$, what do we know about $\operatorname{det} A$?
2. [16 Points] Find all solutions to the linear system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}=12 \\
x_{2}-x_{3}+4 x_{4}=5 \\
3 x_{1}+2 x_{2}+4 x_{3}-x_{4}=31
\end{aligned}
$$

3. [16 Points] Let $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]$.
(a) Compute the inverse of A.
(b) Using your answer to part (a), solve the linear system $A \mathbf{x}=\mathbf{b}$ if $\mathbf{b}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.
4. [12 Points]
(a) If A is a 3×3 matrix with $\operatorname{det} A=3$ and B is obtained from A by first interchanging rows 1 and 2 and then multiplying row 3 by 5 , what is $\operatorname{det}\left(2 A^{2} B\right)$?
(b) Find all values of x for which C^{-1} fails to exist, where $C=\left[\begin{array}{ccc}1 & 2 & 5 x \\ 2 x-1 & 0 & 0 \\ 3 x-5 & 2 & 10\end{array}\right]$.
5. [16 Points] Solve the initial value problem: $y^{\prime}=e^{2 t} y^{2}, \quad y(0)=-1$.
6. [16 Points] Solve the initial value problem: $y^{\prime}+4 y=6 e^{-4 t}+4 e^{-6 t}, \quad y(0)=5$.
7. [16 Points] Find the general solution to the differential equation: $y^{\prime}-4 t y=2 t$.
