Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without supporting work. Put your name on each page of your paper.

1. [8 Points] Short Answer. For True/False questions you must write 'True' or 'False' and justify your answer.
(a) True or False: The differential equation $y^{\prime}=e^{t^{2}+\sin (y)}$ is separable.

- Solution. True. $y^{\prime}=e^{t^{2}+\sin (y)}=e^{t^{2}} e^{\sin (y)}=h(t) g(y)$ so it is separable.
(b) True or False: The differential equation $y^{\prime}+y^{2} t=t^{2}$ is first order linear.
- Solution. False. The y^{2} term makes the equation nonlinear.
(c) What are the possible number of solutions to a system of linear equations?
- Solution. There can be 0 solutions, 1 solution, or infinitely many solutions.
(d) Let A be a 2015×2015 matrix. If the equation $A \mathbf{x}=\mathbf{0}$ has only the solution $\mathrm{x}=\mathbf{0}$, what do we know about $\operatorname{det} A$?
- Solution. $\operatorname{det} A \neq 0$

2. [16 Points] Find all solutions to the linear system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}=12 \\
x_{2}-x_{3}+4 x_{4}=5 \\
3 x_{1}+2 x_{2}+4 x_{3}-x_{4}=31
\end{aligned}
$$

- Solution. The augmented matrix of the system is

$$
\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 12 \\
0 & 1 & -1 & 4 & 5 \\
3 & 2 & 4 & -1 & 31
\end{array}\right] .
$$

Row reduce this matrix:

$$
\begin{array}{r}
{\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 12 \\
0 & 1 & -1 & 4 & 5 \\
3 & 2 & 4 & -1 & 31
\end{array}\right] \stackrel{t_{13}(-3)}{\longrightarrow}\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 12 \\
0 & 1 & -1 & 4 & 5 \\
0 & -1 & 1 & -4 & -5
\end{array}\right]} \\
\left.\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 12 \\
0 & 1 & -1 & 4 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{t_{23}(1)}\left[\begin{array}{rrrrr}
t_{21}(-1) \\
0 & 1 & -1 & 4 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

This last matrix is the augmented matrix of the system

$$
\begin{aligned}
x_{1} \quad+2 x_{3}-3 x_{4} & =7 \\
x_{2}-x_{3}+4 x_{4} & =5 \\
& -0=0
\end{aligned}
$$

This system has leading variables x_{1} and x_{2} and free variables x_{3} and x_{4}. Solving for x_{1} and x_{2} in terms of x_{3} and x_{4}, and letting $x_{3}=s, x_{4}=t$, where s and t are arbitrary, gives the solutions

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
7-2 s+3 t \\
5+s-4 t \\
s \\
t
\end{array}\right], \quad \text { where } s, t \text { are arbitrary. }
$$

3. [16 Points] Let $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]$.
(a) Compute the inverse of A.

- Solution.

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & I
\end{array}\right] } & =\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llllll}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llllll}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llllll}
1 & 0 & 0 & -3 & 1 & 0 \\
0 & 1 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Thus,

$$
A^{-1}=\left[\begin{array}{rrc}
-3 & 1 & 0 \\
-2 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(b) Using your answer to part (a), solve the linear system $A \mathbf{x}=\mathbf{b}$ if $\mathbf{b}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.

- Solution.

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{rll}
-3 & 1 & 0 \\
-2 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-7 \\
-5 \\
3
\end{array}\right] .
$$

4. [12 Points]

(a) If A is a 3×3 matrix with $\operatorname{det} A=3$ and B is obtained from A by first interchanging rows 1 and 2 and then multiplying row 3 by 5 , what is $\operatorname{det}\left(2 A^{2} B\right)$?

- Solution. $\operatorname{det} B=(-1) \cdot 5 \cdot \operatorname{det} A=-15$. Then

$$
\operatorname{det}\left(2 A^{2} B\right)=2^{3}(\operatorname{det} A)^{2} \operatorname{det} B=8 \cdot 9 \cdot(-15)=-1080
$$

(b) Find all values of x for which C^{-1} fails to exist, where $C=\left[\begin{array}{ccc}1 & 2 & 5 x \\ 2 x-1 & 0 & 0 \\ 3 x-5 & 2 & 10\end{array}\right]$.

- Solution. C^{-1} fails to exist when $\operatorname{det} C=0$. Using cofactor expansion along the second row, $\operatorname{det} C=-(2 x-1)\left|\begin{array}{ll}2 & 5 x \\ 2 & 10\end{array}\right|=-(2 x-10)(20-10 x)$. Thus, $\operatorname{det} C=0$ if and only if $x=1 / 2$ or $x=2$.

5. [16 Points] Solve the initial value problem: $y^{\prime}=e^{2 t} y^{2}, \quad y(0)=-1$.

- Solution. This equation is separable. There is one equilibrium solution: $y=0$. This does not satisfy the initial condition so it is not the required solution. If $y \neq 0$, separate variables to get $y^{-2} y^{\prime}=e^{2 t}$, which in differential form is

$$
y^{-2} d y=e^{2 t}, d t
$$

and integration then gives

$$
-y^{-1}=\int e^{2 t} d t=\frac{1}{2} e^{2 t}+C,
$$

so that

$$
y=\frac{-1}{\frac{1}{2} e^{2 t}+C}
$$

The initial condition $y(0)=-1$ gives $-1=-1 /\left(\frac{1}{2}+C\right)$ so $C=\frac{1}{2}$, and

$$
y=\frac{-1}{\frac{1}{2} e^{2 t}+\frac{1}{2}}=\frac{-2}{e^{2 t}+1} .
$$

6. [16 Points] Solve the initial value problem: $y^{\prime}+4 y=6 e^{-4 t}+4 e^{-6 t}, \quad y(0)=5$.

- Solution. This equation is linear with coefficient function $p(t)=4$ so that an integrating factor is given by $\mu(t)=e^{\int 4 d t}=e^{4 t}$. Multiplication of the differential equation by the integrating factor gives

$$
e^{4 t} y^{\prime}+4 e^{4 t} y=6+4 e^{-2 t}
$$

and the left hand side is recognized (by the choice of $\mu(t)$) as a perfect derivative:

$$
\frac{d}{d t}\left(e^{4 t} y\right)=6+4 e^{-2 t}
$$

Integration then gives

$$
e^{4 t} y=6 t-2 e^{-2 t}+C
$$

where C is an integration constant. Multiplying through by $e^{-4 t}$ gives

$$
y=6 t e^{-4 t}-2 e^{-6 t}+C e^{-4 t}
$$

The initial condition gives $5=y(0)=-2+C$ so $C=7$ and thus

$$
y(t)=6 t e^{-4 t}-2 e^{-6 t}+7 e^{-4 t} .
$$

7. [16 Points] Find the general solution to the differential equation: $y^{\prime}-4 t y=2 t$.

- Solution. This equation is linear with coefficient function $p(t)=-4 t$ so that an integrating factor is given by $\mu(t)=e^{\int-4 t d t}=e^{-2 t^{2}}$. Multiplication of the differential equation by the integrating factor gives

$$
e^{-2 t^{2}} y^{\prime}-4 t e^{-2 t^{2}} y=2 t e^{-2 t^{2}}
$$

and the left hand side is recognized (by the choice of $\mu(t)$) as a perfect derivative:

$$
\frac{d}{d t}\left(e^{-2 t^{2}} y\right)=2 t e^{-2 t^{2}}
$$

Integration then gives

$$
e^{-2 t^{2}} y=-\frac{1}{2} e^{-2 t^{2}}+C
$$

where C is an integration constant. Multiplying through by $e^{2 t^{2}}$ gives

$$
y=-\frac{1}{2}+C e^{2 t^{2}}
$$

