Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without supporting work. A table of Laplace transforms and some Fourier series and integration formulas have been appended to the exam.

1. Let $A=\left[\begin{array}{rr}2 & 4 \\ -1 & -2\end{array}\right]$.
(a) [3 Points] Verify that the characteristic polynomial of A is $c_{A}(s)=s^{2}$.

- Solution.

$$
\begin{aligned}
c_{A}(s) & =\operatorname{det}(s I-A)=\operatorname{det}\left[\begin{array}{cc}
s-2 & -4 \\
1 & s+2
\end{array}\right]=(s-2)(s+2)-(-4)(1) \\
& =s^{2}+2 s-2 s-4+4=s^{2}
\end{aligned}
$$

(b) [10 Points $]$ Compute the matrix exponential $e^{A t}$.

- Solution. Use Fulmer's method. The only root of $c_{A}(s)$ is 0 with multiplicity 2 so $\mathcal{B}_{c_{A}(s)}=\{1, t\}$. Thus, $e^{A t}=M_{1}+M_{2} t$ for constant matrices M_{1} and M_{2}. Differentiation gives $A e^{A t}=M_{2}$, and evaluating both equations at $t=0$ gives

$$
\begin{aligned}
I & =M_{1} \\
A & =M_{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
e^{A t} & =I+A t \\
& =\left[\begin{array}{rr}
1+2 t & 4 t \\
-t & 1-2 t
\end{array}\right] .
\end{aligned}
$$

(c) [7 Points] Find the general solution of $\mathbf{y}^{\prime}=A \mathbf{y}$.

- Solution.

$$
\mathbf{y}(t)=e^{A t} \mathbf{y}(0)=e^{A t}\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{rrr}
1+2 t & & 4 t \\
-t & 1-2 t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1}+\left(2 c_{2}+4 c_{2}\right) t \\
c_{2}-\left(c_{1}+2 c_{2}\right) t
\end{array}\right]
$$

where c_{1}, c_{2} are arbitrary constants.
(d) $[\mathbf{1 0}$ Points $]$ Solve the initial value problem $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{f}(t), \mathbf{y}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, where $\mathbf{f}(t)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

- Solution.

$$
\begin{aligned}
\mathbf{y}(t) & =e^{A t}\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\int_{0}^{t} e^{A(t-u) t} \mathbf{f}(u) d u \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\int_{0}^{t}\left[\begin{array}{cc}
1+2(t-u) & 4(t-u) \\
-(t-u) & 1-2(t-u)
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] d u \\
& =\int_{0}^{t}\left[\begin{array}{l}
2+8(t-u) \\
1-4(t-u)
\end{array}\right] d u \\
& =\left[\begin{array}{c}
\int_{0}^{t}(2+8(t-u)) d u \\
\int_{0}^{t}(1-4(t-u)) d u
\end{array}\right] \\
& =\left[\begin{array}{c}
\left.\left(2 u-4(t-u)^{2}\right)\right|_{0} ^{t} \\
\left.\left(u+2(t-u)^{2}\right)\right|_{0} ^{t}
\end{array}\right]=\left[\begin{array}{c}
2 t+4 t^{2} \\
t-2 t^{2}
\end{array}\right] .
\end{aligned}
$$

2. Consider the following first order linear system of differential equations

$$
\begin{aligned}
& y_{1}^{\prime}=y_{1}-2 y_{2} \\
& y_{2}^{\prime}=4 y_{1}-3 y_{2}
\end{aligned}
$$

(a) [3 Points] Write the system in matrix form $\mathbf{y}^{\prime}=A \mathbf{y}$.

- Solution.

$$
\mathbf{y}^{\prime}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
1 & -2 \\
4 & -3
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
4 & -3
\end{array}\right] \mathbf{y}
$$

(b) [3 Points] Verify that the characteristic polynomial of A is $c_{A}(s)=(s+1)^{2}+4$.
-Solution.

$$
\begin{aligned}
c_{A}(s) & =\operatorname{det}(s I-A)=\operatorname{det}\left[\begin{array}{cc}
s-1 & 2 \\
-4 & s+3
\end{array}\right]=(s-1)(s+3)-(-4)(2) \\
& =s^{2}+2 s-3+8=s^{2}+2 s+5=(s+1)^{2}+4
\end{aligned}
$$

(c) $[14$ Points $]$ Solve this system with the initial conditions $y_{1}(0)=1, y_{2}(0)=-1$.

- Solution. First compute $e^{A t}: c_{A}(s)=(s+1)^{2}+4$ so

$$
\begin{aligned}
(s I-A)^{-1} & =\frac{1}{(s+1)^{2}+4}\left[\begin{array}{cc}
s+3 & -2 \\
4 & s-1
\end{array}\right]=\left[\begin{array}{cc}
\frac{s+3}{(s+1)^{2}+4} & \frac{-2}{(s+1)^{2}+4} \\
\frac{4}{(s+1)^{2}+4} & \frac{s-1}{(s+1)^{2}+4}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{s+1}{(s+1)^{2}+4}+\frac{4}{(s+1)^{2}+4} & \frac{s+1}{(s+1)^{2}+4} \\
\frac{-2}{(s+1)^{2}+4} & \frac{-2}{(s+1)^{2}+4}+\frac{1}{(s+1)^{2}+4}
\end{array}\right] .
\end{aligned}
$$

Thus,

$$
e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}=\left[\begin{array}{cc}
e^{-t} \cos 2 t+e^{-t} \sin 2 t & -e^{-t} \sin 2 t \\
2 e^{-t} \sin 2 t & e^{-t} \cos 2 t-e^{-t} \sin 2 t
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{y}(t) & =e^{A t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{cc}
e^{-t} \cos 2 t+e^{-t} \sin 2 t & -e^{-t} \sin 2 t \\
2 e^{-t} \sin 2 t & e^{-t} \cos 2 t-e^{-t} \sin 2 t
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{-t} \cos 2 t+2 e^{-t} \sin 2 t \\
-e^{-t} \cos 2 t+3 e^{-t} \sin 2 t
\end{array}\right] .
\end{aligned}
$$

3. Let $f(t)$ be the function of period 4 that is defined on the interval $[-2,2)$ by

$$
f(t)= \begin{cases}4 & \text { if }-2 \leq t<0 \\ 0 & \text { if } 0 \leq t<2\end{cases}
$$

(a) [4 Points] Sketch the graph of $f(t)$ on the interval $[-6,6]$. Be sure to label the axes of the graph.

- Solution.

(b) [3 Points] Determine all the points $t \in \mathbb{R}$ where $f(t)$ is discontinuous.

- Solution. $f(t)$ is discontinuous for $0, \pm 2, \pm 4, \pm 6, \cdots$. That is, for all $t=2 n$ for n an integer.
(c) [3 Points] Fill in the blanks to complete the convergence theorem for Fourier series:
If $f(t)$ is periodic and piecewise smooth , then its Fourier series converges to
i. $f(t)$ at each point t where $f(t)$ is continuous.
ii. $\left(f\left(t^{+}\right)+f\left(t^{-}\right)\right) / 2$ at each point t where $f(t)$ is not continuous.
(d) [16 Points] Compute the Fourier series of $f(t)$.
- Solution. The period is $4=2 L$ so $L=2$. Thus,

$$
a_{0}=\frac{1}{2} \int_{-2}^{2} f(t) d t=\frac{1}{2} \int_{-2}^{0} 4 d t+\frac{1}{2} \int_{0}^{2} 0 d t=4+0=4
$$

For $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \int_{-2}^{2} f(t) \cos \frac{n \pi}{2} t d t \\
& =\frac{1}{2} \int_{-2}^{0} 4 \cos \frac{n \pi}{2} t d t+\frac{1}{2} \int_{0}^{2} 0 \cos \frac{n \pi}{2} t d t \\
& =\left.\frac{4}{n \pi} \sin \frac{n \pi}{2} t\right|_{-2} ^{0} \\
& =\frac{4}{n \pi}(\sin 0-\sin (-n \pi)) \\
& =0 \quad \text { since } \sin n \pi=0 .
\end{aligned}
$$

For $n \geq 1$,

$$
\begin{aligned}
b_{n} & =\frac{1}{2} \int_{-2}^{2} f(t) \sin \frac{n \pi}{2} t d t \\
& =\frac{1}{2} \int_{-2}^{0} 4 \sin \frac{n \pi}{2} t d t+\frac{1}{2} \int_{0}^{2} 0 \sin \frac{n \pi}{2} t d t \\
& =-\left.\frac{4}{n \pi} \cos \frac{n \pi}{2} t\right|_{-2} ^{0} \\
& =-\frac{4}{n \pi}(1-\cos n \pi) \\
& =\frac{4}{n \pi}(\cos n \pi-1)= \begin{cases}0 & n \text { is even } \\
-\frac{8}{n \pi} & n \text { is odd. }\end{cases}
\end{aligned}
$$

Thus, the Fourier series of $f(t)$ is

$$
f(t) \sim 2-\frac{8}{\pi} \sum_{n=\mathrm{odd}} \frac{1}{n} \sin \frac{n \pi}{2} t
$$

(e) [4 Points] Let $g(t)$ denote the sum of the Fourier series found in part (d). Compute $g(-4)$ and $g(15.5)$.

- Solution. $g(-4)=\left(f\left(-4^{+}\right)+f\left(-4^{-}\right)\right) / 2=(0+4) / 2=2$ since f has a jump discontinuity at -4. $g(t)$ is periodic of period 4 so $g(15.5)=g(15.5-3 \cdot 4)=$ $g(3.5)=f(3.5)=4$, since f is continuous at 3.5.

4. Consider the function

$$
f(t)=2 t+1, \quad 0<t<\pi
$$

(a) [4 Points] Let $f_{e}(t)$ be the even periodic extension of $f(t)$. Give an explicit formula for $f_{e}(t)$ and draw the graph of $f_{e}(t)$ on the interval $[-3 \pi, 3 \pi]$. Be sure to label the graph.

- Solution. The even periodic extension is
$f_{e}(t)=\left\{\begin{array}{ll}f(t) & \text { if } 0<t<\pi \\ f(-t) & \text { if }-\pi<t<0\end{array}=\left\{\begin{array}{ll}2 t+1 & \text { if } 0<t<\pi \\ -2 t+1 & \text { if }-p i<t<0\end{array}, \quad f(t+2 \pi)=f(t)\right.\right.$.
The graph is:

(b) [4 Points] Let $f_{o}(t)$ be the odd periodic extension of $f(t)$. Give an explicit formula for $f_{o}(t)$ and draw the graph of $f_{o}(t)$ on the interval $[-3 \pi, 3 \pi]$.
- Solution. The odd periodic extension is
$f_{0}(t)=\left\{\begin{array}{ll}f(t) & \text { if } 0<t<\pi \\ -f(-t) & \text { if }-\pi<t<0\end{array}=\left\{\begin{array}{ll}2 t+1 & \text { if } 0<t<\pi \\ 2 t-1 & \text { if }-p i<t<0\end{array}, \quad f(t+2 \pi)=f(t)\right.\right.$.
The graph is:

(c) [12 Points] Compute the Fourier cosine series of $f(t)$.
- Solution. The cosine series has only cosine terms. For $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{2}{L} \int_{0}^{L} f(t) \cos \frac{n \pi}{L} t d t \\
& =\frac{2}{\pi} \int_{0}^{2}(2 t+1) \cos n t d t \\
& =\frac{2}{\pi}\left[\frac{2}{n^{2}} \cos n t-\frac{2 t+1}{n} \sin n t\right]_{0}^{\pi} \\
& =\frac{4}{n^{2} \pi}(\cos n \pi-1) \\
& =\frac{4}{n \pi}\left((-1)^{n}-1\right) \\
& = \begin{cases}0 & \text { if } n \text { is even } \\
-\frac{8}{n^{2} \pi} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

For $n=0$,

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi}(2 t+1) d t=\left.\frac{2}{\pi}\left(t^{2}+t\right)\right|_{0} ^{\pi}=2(\pi+1)
$$

Thus, the Fourier cosine series is

$$
f(t) \sim(\pi+1)-\sum_{n=\text { odd }} \frac{8}{n^{2} \pi} \cos n t .
$$

The following Fourier series and integration formulas may be of use:

$$
\begin{gathered}
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} t+b_{n} \sin \frac{n \pi}{L} t\right) \quad \text { where } \\
a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n \pi}{L} t d t, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n \pi}{L} t d t . \\
\\
\int(b t+c) \sin a t d t=\frac{b}{a^{2}} \sin a t-\frac{b t+c}{a} \cos a t \\
\quad \int(b t+c) \cos a t d t=\frac{b}{a^{2}} \cos a t+\frac{b t+c}{a} \sin a t .
\end{gathered}
$$

Laplace Transform Table

	$f(t)$	\longleftrightarrow	$F(s)=\mathcal{L}\{f(t)\}(s)$
1.	1	\longleftrightarrow	
2.	t^{n}	\longleftrightarrow	n !
			$\overline{s^{n+1}}$
3.	$e^{a t}$	\longleftrightarrow	1
			$s-a$
4.	$t^{n} e^{a t}$	\longleftrightarrow	$n!$
			$\overline{(s-a)^{n+1}}$
5.	$\cos b t$	\longleftrightarrow	$\frac{s}{s+b^{2}}$
			$s^{2}+b^{2}$ b
6.	$\sin b t$	\longleftrightarrow	$\overline{s^{2}+b^{2}}$
7.	$e^{a t} \cos b t$	\longleftrightarrow	$\frac{s-a}{(s-a)^{2}+b^{2}}$
			$(s-a)^{2}+b^{2}$
8.	$e^{a t} \sin b t$	\longleftrightarrow	b
			$\overline{(s-a)^{2}+b^{2}}$
9.	$h(t-c)$	\longleftrightarrow	$\underline{e^{-s c}}$
			s
10.	$\delta_{c}(t)=\delta(t-c)$	\longleftrightarrow	$e^{-s c}$

Laplace Transform Principles

Linearity	$\mathcal{L}\{a f(t)+b g(t)\}$	$=a \mathcal{L}\{f\}+b \mathcal{L}\{g\}$
Input Derivative Principles	$\mathcal{L}\left\{f^{\prime}(t)\right\}(s)$	$=s \mathcal{L}\{f(t)\}-f(0)$
First Translation Principle	$\mathcal{L}\left\{f^{\prime \prime}(t)\right\}(s)$	$=s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0)$
Transform Derivative Principle	$\mathcal{L}\left\{e^{a t} f(t)\right\}$	$=F(s-a)$
Second Translation Principle	$\mathcal{L}\{-t f(t)\}(s)$	$=\frac{d}{d s} F(s)$
	$\mathcal{L}\{t-c) f(t-c)\}$	$=e^{-s c} F(s)$, or
The Convolution Principle	$\mathcal{L}\{g(t) h(t-c)\}$	$=e^{-s c} \mathcal{L}\{g(t+c)\}$.
		$=F(f * g)(t)\}(s)$

