Math 2070 Section 1 Homework 10: SolutionĐue: November 23, 2015

Instructions. Do each problem showing your work. Answers alone are not sufficient. Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the Fourier series supplement:
Section 10.2: 2, 10, 12
2. The period is 2π so $L=\pi$. Use the Euler formulas for a_{n} to conclude

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=0
$$

for all $n \geq 0$. This is because the function $f(t) \cos \frac{n \pi}{L} t$ is the product of an odd and even function, and hence is odd, which implies that the integral is 0 . Now compute the coefficients b_{n} :

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t=\frac{1}{\pi} \int_{-\pi}^{0} f(t) \sin n t d t+\frac{1}{\pi} \int_{0}^{\pi} f(t) \sin n t d t \\
& =\frac{1}{\pi} \int_{-\pi}^{0}(-2) \sin n t d t+\frac{1}{\pi} \int_{0}^{\pi}(+2) \sin n t d t \\
& =\frac{1}{\pi}\left\{\left[\frac{1}{n} \cos n t\right]_{-\pi}^{0}-\left[\frac{1}{n} \cos n t\right]_{0}^{\pi}\right\} \\
& =\frac{2}{n \pi}[(1-\cos (-n \pi))+(1-\cos (n \pi))] \\
& =\frac{4}{n \pi}(1-\cos n \pi)=\frac{4}{n \pi}\left(1-(-1)^{n}\right) .
\end{aligned}
$$

Therefore,

$$
b_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ \frac{8}{n \pi} & \text { if } n \text { is odd }\end{cases}
$$

and the Fourier series is

$$
\begin{aligned}
f(t) & \sim \frac{8}{\pi}\left(\sin n t+\frac{1}{3} \sin n t+\frac{1}{5} \sin n t+\frac{1}{7} \sin n t+\cdots\right) \\
& =\frac{8}{\pi} \sum_{n=\text { odd }} \frac{1}{n} \sin n t .
\end{aligned}
$$

10. The period is 2π so $L=\pi$ and $n \pi / L=n$. For the cosine terms a_{n} :

$$
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} \sin t d t=-\left.\frac{1}{\pi} \cos t\right|_{0} ^{\pi}=\frac{2}{\pi},
$$

and for $n \geq 1$,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=\frac{1}{\pi} \int_{0}^{\pi} f(t) \cos n t d t=\frac{1}{\pi} \int_{0}^{\pi} \sin t \cos n t d t \\
& =\frac{1}{\pi} \int_{0}^{\pi} \frac{1}{2}(\sin (n+1) t-\sin (n-1) t) d t \\
& =\frac{1}{2 \pi}\left[\frac{-1}{n+1} \cos (n+1) t+\frac{1}{n-1} \cos (n-1) t\right]_{0}^{\pi} \\
& =\frac{1}{2 \pi}\left[\frac{-1}{n+1}(\cos (n+1) \pi-1)+\frac{1}{n-1}(\cos (n-1) \pi-1)\right] \\
& = \begin{cases}\frac{-1}{\pi}\left[\frac{1}{n-1}-\frac{1}{n+1}\right]=\frac{-2}{\left(n^{2}-1\right) \pi} & \text { if } n \text { is even, } \\
0 & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

For the sine terms b_{n}, first do $n=1$.

$$
b_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin t d t=\frac{1}{\pi} \int_{0}^{\pi} \sin ^{2} t d t=\frac{1}{2 \pi} \int_{0}^{\pi}(1-\cos 2 t) d t=\frac{1}{2} .
$$

For $n>1$,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t=\frac{1}{\pi} \int_{0}^{\pi} f(t) \sin n t d t=\frac{1}{\pi} \int_{0}^{\pi} \sin t \sin n t d t \\
& =\frac{1}{\pi} \int_{0}^{\pi} \frac{1}{2}(\cos (n-1) t-\cos (n+1) t) d t \\
& =\frac{1}{2 \pi}\left[\frac{1}{n-1} \sin (n-1) t-\frac{1}{n+1} \sin (n+1) t\right]_{0}^{\pi} \\
& =0
\end{aligned}
$$

Therefore, the Fourier series is

$$
f(t) \sim \frac{1}{\pi}+\frac{1}{2} \sin t-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2 n t}{4 n^{2}-1} .
$$

12. The function $f(t)$ is periodic of period $2=2 L$ so $L=1$ and it is odd so the cosine
terms $a_{n}=0$ for all n. Compute the b_{n} terms from Euler's formula:

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n \pi}{L} t d t=\int_{-1}^{1} f(t) \sin n \pi t d t \\
& =2 \int_{0}^{1}(-1+t) \sin n \pi t d t=-2 \int_{0}^{1} \sin n \pi t d t+2 \int_{0}^{1} t \sin n \pi t d t \\
& =\left.\frac{2}{n \pi} \cos n \pi t\right|_{0} ^{1}+2 \int_{0}^{1} t \sin n \pi t d t \\
& =\frac{2}{n \pi}\left((-1)^{n}-1\right)+2 \int_{0}^{1} t \sin n \pi t d t \quad\left(\text { let } x=n \pi t \text { so } t=\frac{1}{n \pi} x \text { and } d t=\frac{1}{n \pi} d x\right) \\
& =\frac{2}{n \pi}\left((-1)^{n}-1\right)+2 \int_{0}^{n \pi} \frac{1}{n \pi} x \sin x \frac{1 d x}{n \pi}=\frac{2}{n^{2} \pi^{2}} \int_{0}^{n \pi} x \sin x d x \\
& =\frac{2}{n \pi}\left((-1)^{n}-1\right)+\frac{2}{n^{2} \pi^{2}}[\sin x-x \cos x]_{x=0}^{x=n \pi} \\
& =\frac{2}{n \pi}\left((-1)^{n}-1\right)-\frac{2}{n^{2} \pi^{2}}(n \pi \cos n \pi)=\frac{2}{n \pi}\left((-1)^{n}-1\right)-\frac{2}{n \pi}(-1)^{n}=-\frac{2}{n \pi} .
\end{aligned}
$$

Thus, the Fourier series is

$$
f(t) \sim-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n \pi t}{n}
$$

Section 10.3: 2, 6, 12
2. (a)

(b) All t except for $t=n$ for n an odd integer.
(c) For t an odd integer, $f(t)=-1$. Fourier series converges to 0 .
6. (a)

(b) The function is continuous for all $t \neq 2 n+1$ so the Fourier series converges to $f(t)$ for all $t \neq 2 n+1$.
(c) For $t=2 n+1, f(t)=f(-1)=-3$. The Fourier series converges to $(-3+$ 1) $/ 2=-1$.

Math 2070 Section 1 Homework 10: Solution 1 Due: November 23, 2015
12. The Fourier series of $f(t)$ is

$$
f(t) \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos (2 k+1) t}{(2 k+1)^{2}}
$$

Since $f(t)$ is continuous, the Fourier series converges to $f(t)$ for all t. Thus,

$$
|t|=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos (2 k+1) t}{(2 k+1)^{2}} \quad \text { for }-\pi<t<\pi
$$

Letting $t=0$ gives

$$
0=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}
$$

so that

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

Section 10.4: 2, 8
2. The odd extension of $f(t)$ is the sawtooth wave of period 2 given by $f_{o}(t)=t$ for $-1 \leq t<1 ; f(t+2)=f(t)$. This is exactly the Fourier series computed in Example 5 , Section 10.2 , with $L=1$ so the Fourier sine series of $f(t)$ is

$$
t \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n \pi t
$$

This series converges to the sawtooth wave for all $t \neq n$ where n is an odd integer. At $t=n$ is an odd integer, the series converges to 0 .

Graph:

The even extension of $f(t)$ is the even triangular wave function of period 2 :

$$
f(t)=\left\{\begin{array}{ll}
-t & \text { if }-1 \leq t<0, \\
t & \text { if } 0 \leq t<1
\end{array}, f(t+2)=f(t)\right.
$$

The Fourier coefficients are:

For $n=0$,

$$
\begin{aligned}
a_{0} & =2 \int_{0}^{1} f(t) d t \\
& =2 \int_{0}^{1} t d t=\left.2 \frac{t^{2}}{2}\right|_{0} ^{1}=1
\end{aligned}
$$

For $n \geq 1$,

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1} f(t) \cos n \pi t d t \\
& =2 \int_{0}^{1} t \cos n \pi t d t \quad\left(\text { let } x=n \pi t \text { so } t=\frac{x}{n \pi} \text { and } d t=\frac{d x}{n \pi}\right) \\
& =2 \int_{0}^{n \pi} \frac{x}{n \pi} \cos x \frac{d x}{n \pi}=\frac{2}{n^{2} \pi^{2}}[x \sin x+\cos x]_{x=0}^{x=n \pi} \\
& =\frac{2}{n^{2} \pi^{2}}[\cos n \pi-1]=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

Therefore,

$$
a_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ -\frac{4}{n^{2} \pi^{2}} & \text { if } n \text { is odd }\end{cases}
$$

and the Fourier series is

$$
\begin{aligned}
f(t) & \sim \frac{1}{2}-\frac{4}{\pi^{2}}\left(\frac{\cos \pi t}{1^{2}}+\frac{\cos 3 \pi t}{3^{2}}+\frac{\cos 5 \pi t}{5^{2}}+\frac{\cos 7 \pi t}{7^{2}}+\cdots\right) \\
& =\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{n=\mathrm{odd}}^{\infty} \frac{\cos n \pi t}{n^{2}} .
\end{aligned}
$$

Since the even extension is continuous, it converges to the even extension at all points t.

Graph:

8. The odd extension of $f(t)=\sin t$ defined on $0<t<\pi$ is just $f_{o}(t)=\sin t$ for all $t \in \mathbb{R}$. Thus, the Fourier sine series is just $\sin t$.
The even extension of $f(t)=\sin t$ is $f_{e}(t)=|\sin t|$ for all $t \in \mathbb{R}$. The coefficients of the Fourier cosine series are thus:

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \sin t d t=-\left.\frac{2}{\pi} \cos t\right|_{0} ^{\pi}=-\frac{2}{\pi}(\cos \pi-\cos 0)=\frac{4}{\pi}
$$

and for $n \geq 1$, (the product formula $\sin \theta \cos \phi=\frac{1}{2}(\sin (\theta+\phi)+\sin (\theta-\phi))$ will be useful),

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} \sin t \cos n t d t= \\
& =\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2}(\sin (n+1) t-\sin (n-1) t) d t \\
& =\frac{1}{\pi}\left[-\frac{1}{n+1} \cos (n+1) t+\frac{1}{n-1} \cos (n-1) t\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left[-\frac{1}{n+1} \cos (n+1) \pi+\frac{1}{n+1}+\frac{1}{n-1} \cos (n-1) \pi-\frac{1}{n-1}\right] \\
& = \begin{cases}0 & \text { if } n \text { is odd } \\
\frac{2}{\pi}\left[\frac{1}{n+1}-\frac{1}{n-1}\right] & \text { if } n \text { is even }\end{cases} \\
& = \begin{cases}0 & \text { if } n \text { is odd } \\
-\frac{4}{\pi\left(n^{2}-1\right)} & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

Thus, the Fourier series is

$$
\begin{aligned}
f(t) & \sim \frac{2}{\pi}+\frac{4}{\pi}\left(-\frac{1}{3} \cos 2 t-\frac{1}{15} \cos 4 t-\frac{1}{35} \cos 6 t+\cdots\right) \\
& =\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=\text { even }}^{\infty} \frac{1}{n^{2}-1} \cos n t .
\end{aligned}
$$

Graph:

