Instructions. Do each problem showing your work. Answers alone are not sufficient. Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the Fourier series supplement:

Section 10.2: 2, 10, 12

2. The period is 2π so $L = \pi$. Use the Euler formulas for a_n to conclude

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt = 0$$

for all $n \ge 0$. This is because the function $f(t) \cos \frac{n\pi}{L}t$ is the product of an odd and even function, and hence is odd, which implies that the integral is 0. Now compute the coefficients b_n :

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt = \frac{1}{\pi} \int_{-\pi}^{0} f(t) \sin nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} f(t) \sin nt \, dt$$
$$= \frac{1}{\pi} \int_{-\pi}^{0} (-2) \sin nt \, dt + \frac{1}{\pi} \int_{0}^{\pi} (+2) \sin nt \, dt$$
$$= \frac{1}{\pi} \left\{ \left[\frac{1}{n} \cos nt \right]_{-\pi}^{0} - \left[\frac{1}{n} \cos nt \right]_{0}^{\pi} \right\}$$
$$= \frac{2}{n\pi} [(1 - \cos(-n\pi)) + (1 - \cos(n\pi))]$$
$$= \frac{4}{n\pi} (1 - \cos n\pi) = \frac{4}{n\pi} (1 - (-1)^n).$$

Therefore,

$$b_n = \begin{cases} 0 & \text{if } n \text{ is even,} \\ \frac{8}{n\pi} & \text{if } n \text{ is odd,} \end{cases}$$

and the Fourier series is

$$f(t) \sim \frac{8}{\pi} \left(\sin nt + \frac{1}{3} \sin nt + \frac{1}{5} \sin nt + \frac{1}{7} \sin nt + \cdots \right)$$
$$= \frac{8}{\pi} \sum_{n = \text{odd}} \frac{1}{n} \sin nt.$$

10. The period is 2π so $L = \pi$ and $n\pi/L = n$. For the cosine terms a_n :

$$a_0 = \frac{1}{\pi} \int_0^\pi \sin t \, dt = \left. -\frac{1}{\pi} \cos t \right|_0^\pi = \frac{2}{\pi},$$

and for $n \ge 1$,

$$\begin{aligned} a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt = \frac{1}{\pi} \int_0^{\pi} f(t) \cos nt \, dt = \frac{1}{\pi} \int_0^{\pi} \sin t \cos nt \, dt \\ &= \frac{1}{\pi} \int_0^{\pi} \frac{1}{2} (\sin(n+1)t - \sin(n-1)t) \, dt \\ &= \frac{1}{2\pi} \left[\frac{-1}{n+1} \cos(n+1)t + \frac{1}{n-1} \cos(n-1)t \right]_0^{\pi} \\ &= \frac{1}{2\pi} \left[\frac{-1}{n+1} (\cos(n+1)\pi - 1) + \frac{1}{n-1} (\cos(n-1)\pi - 1) \right] \\ &= \begin{cases} \frac{-1}{\pi} \left[\frac{1}{n-1} - \frac{1}{n+1} \right] = \frac{-2}{(n^2 - 1)\pi} & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases} \end{aligned}$$

For the sine terms b_n , first do n = 1.

$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin t \, dt = \frac{1}{\pi} \int_0^{\pi} \sin^2 t \, dt = \frac{1}{2\pi} \int_0^{\pi} (1 - \cos 2t) \, dt = \frac{1}{2}.$$

For n > 1,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt = \frac{1}{\pi} \int_0^{\pi} f(t) \sin nt \, dt = \frac{1}{\pi} \int_0^{\pi} \sin t \sin nt \, dt$$
$$= \frac{1}{\pi} \int_0^{\pi} \frac{1}{2} (\cos(n-1)t - \cos(n+1)t) \, dt$$
$$= \frac{1}{2\pi} \left[\frac{1}{n-1} \sin(n-1)t - \frac{1}{n+1} \sin(n+1)t \right]_0^{\pi}$$
$$= 0$$

Therefore, the Fourier series is

$$f(t) \sim \frac{1}{\pi} + \frac{1}{2}\sin t - \frac{2}{\pi}\sum_{n=1}^{\infty}\frac{\cos 2nt}{4n^2 - 1}$$

12. The function f(t) is periodic of period 2 = 2L so L = 1 and it is odd so the cosine

terms $a_n = 0$ for all n. Compute the b_n terms from Euler's formula:

$$\begin{split} b_n &= \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi}{L} t \, dt = \int_{-1}^{1} f(t) \sin n\pi t \, dt \\ &= 2 \int_{0}^{1} (-1+t) \sin n\pi t \, dt = -2 \int_{0}^{1} \sin n\pi t \, dt + 2 \int_{0}^{1} t \sin n\pi t \, dt \\ &= \frac{2}{n\pi} \cos n\pi t \Big|_{0}^{1} + 2 \int_{0}^{1} t \sin n\pi t \, dt \\ &= \frac{2}{n\pi} ((-1)^n - 1) + 2 \int_{0}^{1} t \sin n\pi t \, dt \qquad \left(\text{let } x = n\pi t \text{ so } t = \frac{1}{n\pi} x \text{ and } dt = \frac{1}{n\pi} dx \right) \\ &= \frac{2}{n\pi} ((-1)^n - 1) + 2 \int_{0}^{n\pi} \frac{1}{n\pi} x \sin x \frac{1 \, dx}{n\pi} = \frac{2}{n^2 \pi^2} \int_{0}^{n\pi} x \sin x \, dx \\ &= \frac{2}{n\pi} ((-1)^n - 1) + \frac{2}{n^2 \pi^2} [\sin x - x \cos x]_{x=0}^{x=n\pi} \\ &= \frac{2}{n\pi} ((-1)^n - 1) - \frac{2}{n^2 \pi^2} (n\pi \cos n\pi) = \frac{2}{n\pi} ((-1)^n - 1) - \frac{2}{n\pi} (-1)^n = -\frac{2}{n\pi}. \end{split}$$

Thus, the Fourier series is

$$f(t) \sim -\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n\pi t}{n}$$

Section 10.3: 2, 6, 12

- (b) All t except for t = n for n an odd integer.
- (c) For t an odd integer, f(t) = -1. Fourier series converges to 0.

- (b) The function is continuous for all $t \neq 2n + 1$ so the Fourier series converges to f(t) for all $t \neq 2n+1$.
- (c) For t = 2n + 1, f(t) = f(-1) = -3. The Fourier series converges to (-3 + 1)1)/2 = -1.

12. The Fourier series of f(t) is

$$f(t) \sim \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos(2k+1)t}{(2k+1)^2}.$$

Since f(t) is continuous, the Fourier series converges to f(t) for all t. Thus,

$$|t| = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\cos(2k+1)t}{(2k+1)^2} \quad \text{for } -\pi < t < \pi.$$

Letting t = 0 gives

$$0 = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2},$$

so that

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

Section 10.4: 2, 8

2. The odd extension of f(t) is the sawtooth wave of period 2 given by $f_o(t) = t$ for $-1 \le t < 1$; f(t+2) = f(t). This is exactly the Fourier series computed in Example 5, Section 10.2, with L = 1 so the Fourier sine series of f(t) is

$$t \sim \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin n\pi t.$$

This series converges to the sawtooth wave for all $t \neq n$ where n is an odd integer. At t = n is an odd integer, the series converges to 0.

The even extension of f(t) is the even triangular wave function of period 2:

$$f(t) = \begin{cases} -t & \text{if } -1 \le t < 0, \\ t & \text{if } 0 \le t < 1 \end{cases}, f(t+2) = f(t)$$

The Fourier coefficients are:

For n = 0,

$$a_0 = 2 \int_0^1 f(t) dt$$

= $2 \int_0^1 t dt = 2 \left. \frac{t^2}{2} \right|_0^1 = 1.$

For $n \geq 1$,

$$a_n = 2 \int_0^1 f(t) \cos n\pi t \, dt$$

= $2 \int_0^1 t \cos n\pi t \, dt$ (let $x = n\pi t$ so $t = \frac{x}{n\pi}$ and $dt = \frac{dx}{n\pi}$)
= $2 \int_0^{n\pi} \frac{x}{n\pi} \cos x \frac{dx}{n\pi} = \frac{2}{n^2 \pi^2} [x \sin x + \cos x]_{x=0}^{x=n\pi}$
= $\frac{2}{n^2 \pi^2} [\cos n\pi - 1] = \frac{2}{n^2 \pi^2} [(-1)^n - 1]$

Therefore,

$$a_n = \begin{cases} 0 & \text{if } n \text{ is even,} \\ -\frac{4}{n^2 \pi^2} & \text{if } n \text{ is odd} \end{cases}$$

and the Fourier series is

$$f(t) \sim \frac{1}{2} - \frac{4}{\pi^2} \left(\frac{\cos \pi t}{1^2} + \frac{\cos 3\pi t}{3^2} + \frac{\cos 5\pi t}{5^2} + \frac{\cos 7\pi t}{7^2} + \cdots \right)$$
$$= \frac{1}{2} - \frac{4}{\pi^2} \sum_{n=\text{odd}}^{\infty} \frac{\cos n\pi t}{n^2}.$$

Since the even extension is continuous, it converges to the even extension at all points t.

8. The odd extension of $f(t) = \sin t$ defined on $0 < t < \pi$ is just $f_o(t) = \sin t$ for all $t \in \mathbb{R}$. Thus, the Fourier sine series is just $\sin t$.

The even extension of $f(t) = \sin t$ is $f_e(t) = |\sin t|$ for all $t \in \mathbb{R}$. The coefficients of the Fourier cosine series are thus:

$$a_0 = \frac{2}{\pi} \int_0^\pi \sin t \, dt = -\frac{2}{\pi} \cos t \Big|_0^\pi = -\frac{2}{\pi} (\cos \pi - \cos 0) = \frac{4}{\pi},$$

and for $n \ge 1$, (the product formula $\sin \theta \cos \phi = \frac{1}{2}(\sin(\theta + \phi) + \sin(\theta - \phi))$ will be useful),

$$\begin{aligned} a_n &= \frac{2}{\pi} \int_0^{\pi} \sin t \cos nt \, dt = \\ &= \frac{2}{\pi} \int_0^{\pi} \frac{1}{2} (\sin(n+1)t - \sin(n-1)t) \, dt \\ &= \frac{1}{\pi} \left[-\frac{1}{n+1} \cos(n+1)t + \frac{1}{n-1} \cos(n-1)t \right]_0^{\pi} \\ &= \frac{1}{\pi} \left[-\frac{1}{n+1} \cos(n+1)\pi + \frac{1}{n+1} + \frac{1}{n-1} \cos(n-1)\pi - \frac{1}{n-1} \right] \\ &= \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{2}{\pi} \left[\frac{1}{n+1} - \frac{1}{n-1} \right] & \text{if } n \text{ is even} \\ &= \begin{cases} 0 & \text{if } n \text{ is odd} \\ -\frac{4}{\pi(n^2-1)} & \text{if } n \text{ is even.} \end{cases} \end{aligned}$$

Thus, the Fourier series is

$$f(t) \sim \frac{2}{\pi} + \frac{4}{\pi} \left(-\frac{1}{3} \cos 2t - \frac{1}{15} \cos 4t - \frac{1}{35} \cos 6t + \cdots \right)$$
$$= \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=\text{even}}^{\infty} \frac{1}{n^2 - 1} \cos nt.$$

