Math 2070 Section 1 Homework 11: Solutions Due: December 3, 2015

Instructions. Do each problem showing your work. Answers alone are not sufficient. Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the Fourier series supplement:
Section 10.5: 2 (a)
2 (a) The hypotheses of Theorem 7 (termwise integration) are satisfied since

$$
g(\pi)=\int_{-\pi}^{\pi} f_{1}(t) d t=\int_{-\pi}^{\pi} t d t=\left.\frac{t^{2}}{2}\right|_{\pi} ^{\pi}=0
$$

Thus, Theorem 7 applies, and the Fourier series of $g(t)=\int_{\pi}^{t} x d x$ is

$$
g(t)=\frac{t^{2}}{2}-\frac{\pi^{2}}{2} \sim \frac{A_{0}}{2}-2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n t
$$

where

$$
A_{0}=-\frac{1}{\pi} \int_{-\pi}^{\pi} t f_{1}(t) d t=-\frac{1}{\pi} \int_{-\pi}^{\pi} t^{2} d t=-\left.\frac{1}{\pi} \frac{t^{3}}{3}\right|_{-\pi} ^{\pi}=-\frac{2 \pi^{2}}{3} .
$$

Thus, solving for t^{2} gives the Fourier series

$$
f_{2}(t)=t^{2} \sim \frac{\pi^{2}}{3}-4 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos n t
$$

Section 10.6: 6
6 The Fourier series of $f(t)$ is the sine series of $f(t)$. It was computed in Exercise 2 of Section 10.4 as $f(t) \sim \frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n \pi t}{n}$. Let $y(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \pi t+\right.$ $\left.B_{n} \sin n \pi t\right)$ be a 2-periodic solution of $y^{\prime \prime}+5 y=f(t)$ expressed as the sum of its Fourier series. Then $y(t)$ will satisfy the hypotheses of Theorem 3 (termwise differentiation) of Section 10.5. Thus, differentiating twice will give

$$
y^{\prime \prime}(t)=\sum_{n=1}^{\infty}\left[-n^{2} \pi^{2} A_{n} \cos n \pi t-n^{2} \pi^{2} B_{n} \sin n \pi t\right]
$$

Substituting into the differential equation gives

$$
\begin{aligned}
y^{\prime \prime}(t)+y(t) & =\frac{5 A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n}\left(5-n^{2} \pi^{2}\right) \cos n \pi t+B_{n}\left(5-n^{2} \pi^{2}\right) \sin n \pi t\right] \\
& =\frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n \pi t}{n}
\end{aligned}
$$

Comparing corresponding coefficients of $\cos n \pi t$ and $\sin n \pi t$ gives the equations

$$
\begin{aligned}
\frac{5 A_{0}}{2} & =0 \\
A_{n}\left(5-n^{2} \pi^{2}\right) & =0 \quad \text { for all } n \geq 1 \\
B_{n}\left(5-n^{2} \pi^{2}\right) & =\frac{2(-1)^{n+1}}{n \pi} \quad \text { for all } n \geq 1
\end{aligned}
$$

Solving these equations gives $A_{0}=0$ for all $n \geq 0$,

$$
B_{n}=\frac{2(-1)^{n+1}}{\left(5-n^{2} \pi^{2}\right) n \pi}
$$

Thus, the unique 2-periodic solution is the sum of the Fourier series expansion

$$
y(t)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{\left(5-n^{2} \pi^{2}\right) n \pi} \sin n \pi t
$$

Do the following problem from the heat equation supplement:
Page 627: 9
9. From the definition of the heat equation (Equation 12.1.4, page 624 of heat equation supplement), $a^{2}=9, L=4$, and $f(x)=1$ for $0<x<4$. Thus, the solution of the heat equation is given from Equation 12.1.5 (page 624) by

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} e^{-9 n^{2} \pi^{2} t / 16} \sin \frac{n \pi x}{4}
$$

where α_{n} is the $n^{\text {th }}$ coefficient of the Fourier Sine series of $f(x)$. Thus,

$$
\begin{aligned}
\alpha_{n} & =\frac{2}{4} \int_{0}^{4} \sin \frac{n \pi x}{4} d x \\
& =-\left.\frac{2}{n \pi} \cos \frac{n \pi x}{4}\right|_{0} ^{4} \\
& =\frac{2}{n \pi}(1-\cos n \pi) \\
& = \begin{cases}0 & \text { if } n \text { is even } \\
\frac{4}{n \pi} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Hence, the solution of the heat equation is

$$
u(x, t)=\frac{4}{\pi} \sum_{n=\text { odd }} \frac{1}{n} e^{-9 n^{2} \pi^{2} t / 16} \sin \frac{n \pi x}{4}
$$

