Math 2070 Section 1 Homework 11: Solutions Due: December 3, 2015

Instructions. Do each problem showing your work. Answers alone are not sufficient.
Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the Fourier series supplement:

Section 10.5: 2 (a)

2 (a) The hypotheses of Theorem 7 (termwise integration) are satisfied since
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Thus, Theorem 7 applies, and the Fourier series of g(t) = f; xdr is
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Thus, solving for 2 gives the Fourier series
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Section 10.6: 6

6 The Fourier series of f(t) is the sine series of f(t). It was computed in Exercise 2
of Section 10.4 as f(t) ~ 23°°° (=1 1ot [et y(t) = 42 + 3% (A4, cosnmt +
B, sinnwt) be a 2-periodic solution of y” + 5y f(t) expressed as the sum of
its Fourier series. Then y(t) will satisfy the hypotheses of Theorem 3 (termwise
differentiation) of Section 10.5. Thus, differentiating twice will give
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Substituting into the differential equation gives
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Comparing corresponding coefficients of cos nnt and sin nnt gives the equations
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Solving these equations gives Ay = 0 for all n > 0,
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Thus, the unique 2-periodic solution is the sum of the Fourier series expansion
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Do the following problem from the heat equation supplement:
Page 627: 9

9. From the definition of the heat equation (Equation 12.1.4, page 624 of heat equation
supplement), a> =9, L = 4, and f(x) =1 for 0 < z < 4. Thus, the solution of the
heat equation is given from Equation 12.1.5 (page 624) by
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where a,, is the n' coefficient of the Fourier Sine series of f(z). Thus,
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0 if niseven
4 if nis odd.
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Hence, the solution of the heat equation is

4 1 nwx
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