Instructions. Do each problem showing your work. Answers alone are not sufficient. Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the text:
Page 567: 6, 10
6.

$$
\begin{aligned}
B C & =\left[\begin{array}{rrrr}
2 & 1 & 1 & -3 \\
0 & -1 & 4 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 3 & 1 \\
0 & 1 & 8 \\
1 & 1 & 7
\end{array}\right] \\
& =\left[\begin{array}{rrr}
2 \cdot 2+1 \cdot 1+1 \cdot 0+(-3) \cdot 1 & 2 \cdot 1+1 \cdot 3+1 \cdot 1+(-3) \cdot 1 & 2 \cdot 2+1 \cdot 1+1 \cdot 8+(-3) \cdot 7 \\
0 \cdot 2+(-1) \cdot 1+4 \cdot 0+(-1) \cdot 1 & 0 \cdot 1+(-1) \cdot 3+4 \cdot 1+(-1) \cdot 1 & 0 \cdot 2+(-1) \cdot 1+4 \cdot 8+(-1) \cdot 7
\end{array}\right] \\
& =\left[\begin{array}{rrr}
2 & 3 & -8 \\
-2 & 0 & 24
\end{array}\right]
\end{aligned}
$$

18. $A B=\left[\begin{array}{llll}1 & 4 & 3 & 1\end{array}\right]\left[\begin{array}{r}1 \\ 0 \\ -1 \\ -2\end{array}\right]=[1 \cdot 1+4 \cdot 0+3 \cdot(-1)+1 \cdot(-2)]=[-4]$

$$
\begin{aligned}
& B A=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
-2
\end{array}\right]\left[\begin{array}{llll}
1 & 4 & 3 & 1
\end{array}\right]=\left[\begin{array}{rrrrr}
1 \cdot 1 & 1 \cdot 4 & 1 \cdot 3 & 1 \cdot 1 \\
0 \cdot 1 & 0 \cdot 4 & 0 \cdot 3 & 0 \cdot 1 \\
-1 \cdot 1 & -1 \cdot 4 & -1 \cdot 3 & -1 \cdot 1 \\
-2 \cdot 1 & -2 \cdot 4 & -2 \cdot 3 & -2 \cdot 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
1 & 4 & 3 & 1 \\
0 & 0 & 0 & 0 \\
-1 & -4 & -3 & -1 \\
-2 & -8 & -6 & -2
\end{array}\right]
\end{aligned}
$$

Solve the following systems of linear equations.

$$
\text { 1. } \begin{aligned}
x_{1}+2 x_{2}+3 x_{3}=2 \\
2 x_{1}+5 x_{2}+8 x_{3}=2 \\
5 x_{1}+8 x_{2}+11 x_{3}=14
\end{aligned}
$$

- Solution. The augmented matrix of the system is

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
2 & 5 & 8 & 2 \\
5 & 8 & 11 & 14
\end{array}\right] .
$$

Now row reduce the augmented matrix:

$$
\begin{array}{r}
{\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
2 & 5 & 8 & 2 \\
5 & 8 & 11 & 14
\end{array}\right] \underset{t_{13}(-5)}{\xrightarrow[t_{12}(-2)]{\longrightarrow}}\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
0 & 1 & 2 & -2 \\
0 & -2 & -4 & 4
\end{array}\right]} \\
\xrightarrow{t_{23}(-2)}\left[\begin{array}{rrrr}
1 & 2 & 3 & 2 \\
0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{t_{21}(-2)}\left[\begin{array}{rrrr}
1 & 0 & -1 & 6 \\
0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

The last matrix is in reduced row echelon form. It is the augmented matrix of the linear system

$$
\begin{aligned}
x_{1}+x_{3} & =6 \\
x_{2}+2 x_{3} & =-2
\end{aligned}
$$

where the last equation $0=0$ is left off. The solutions of this last system are obtained by identifying the bound variables as x_{1} and x_{2}, so there is one free variable x_{3}. Solving for x_{1} and x_{2} in terms of x_{3} gives:

$$
\begin{aligned}
& x_{1}=6+x_{3} \\
& x_{2}=-2+2 x_{3} .
\end{aligned}
$$

Letting the free variable be assigned arbitrarily: $x_{3}=\alpha$ gives all the solutions as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6+\alpha \\
2+2 \alpha \\
\alpha
\end{array}\right]
$$

where α is an arbitrary real number.

$$
\text { 2. } \begin{aligned}
2 x_{1}+x_{2}-x_{3} & =3 \\
x_{2}+2 x_{3} & =1 \\
4 x_{1}+2 x_{2}-2 x_{3} & =7
\end{aligned}
$$

- Solution. The augmented matrix of the system is

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{rrrr}
2 & 1 & -1 & 3 \\
0 & 1 & 2 & 1 \\
4 & 2 & -2 & 7
\end{array}\right] .
$$

Now row reduce the augmented matrix:

$$
\left[\begin{array}{rrrr}
2 & 1 & -1 & 3 \\
0 & 1 & 2 & 1 \\
4 & 2 & -2 & 7
\end{array}\right] \xrightarrow{t_{13}(-2)}\left[\begin{array}{rrrr}
2 & 1 & -1 & 3 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The third row of this last matrix corresponds to the equation $0=1$, which has no solutions. Thus, the original system of equations also has no solutions.
$2 x_{1}+3 x_{2}-x_{3}=1$
3. $x_{1}-2 x_{2}+6 x_{3}=11$
$5 x_{1}+x_{2}-x_{3}=12$

- Solution. The augmented matrix of the system is

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{rrrr}
2 & 3 & -1 & 1 \\
1 & -2 & 6 & 11 \\
5 & 1 & -1 & 12
\end{array}\right]
$$

Now row reduce the augmented matrix:

$$
\left.\left.\begin{array}{cc}
{\left[\begin{array}{rrrr}
2 & 3 & -1 & 1 \\
1 & -2 & 6 & 11 \\
5 & 1 & -1 & 12
\end{array}\right]} & \xrightarrow{p_{12}}
\end{array} \begin{array}{cc}
\longrightarrow
\end{array} \begin{array}{rrrr}
1 & -2 & 6 & 11 \\
2 & 3 & -1 & 1 \\
5 & 1 & -1 & 12
\end{array}\right]\right)
$$

The last matrix is in reduced row echelon form. It is the augmented matrix of the linear system

$$
\begin{array}{rlrl}
x_{1} & & =105 / 37 \\
& & & -46 / 37 \\
& x_{2} & & 35 / 37
\end{array}
$$

Since all variables are bound, there is a unique solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
105 / 37 \\
-46 / 37 \\
35 / 37
\end{array}\right] .
$$

$x_{1}+2 x_{2}-3 x_{3}+2 x_{4}=2$
4. $2 x_{1}+5 x_{2}-8 x_{3}+6 x_{4}=5$
$3 x_{1}+4 x_{2}-5 x_{3}+2 x_{4}=4$

- Solution. The augmented matrix of the system is

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{lllll}
1 & 2 & -3 & 2 & 2 \\
2 & 5 & -8 & 6 & 5 \\
3 & 4 & -5 & 2 & 4
\end{array}\right]
$$

Now row reduce the augmented matrix:

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 2 & -3 & 2 & 2 \\
2 & 5 & -8 & 6 & 5 \\
3 & 4 & -5 & 2 & 4
\end{array}\right] \stackrel{t_{13(-3)}}{\xrightarrow[t_{12}(-2)]{\longrightarrow}}\left[\begin{array}{rrrrr}
1 & 2 & -3 & 2 & 2 \\
0 & 1 & -2 & 2 & 1 \\
0 & -2 & 4 & -4 & -2
\end{array}\right]} \\
& \xrightarrow{t_{23}(2)}\left[\begin{array}{rrrrr}
1 & 2 & -3 & 2 & 2 \\
0 & 1 & -2 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{t_{21(-2)}}\left[\begin{array}{rrrrr}
1 & 0 & 1 & 2- & 0 \\
0 & 1 & -2 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The last matrix is in reduced row echelon form. It is the augmented matrix of the linear system

$$
\begin{array}{r}
x_{1}+\begin{aligned}
x_{3}-2 x_{4} & =0 \\
x_{2}-2 x_{3}+2 x_{4} & =1
\end{aligned}, ~=~
\end{array}
$$

where the last equation $0=0$ is left off. The solutions of this last system are obtained by identifying the bound variables as x_{1} and x_{2}, so the free variables are x_{3} and x_{4}. Solving for x_{1} and x_{2} in terms of x_{3} and x_{4}, gives:

$$
\begin{aligned}
& x_{1}=-x_{3}+2 x_{4} \\
& x_{2}=1+2 x_{3}-2 x_{4} .
\end{aligned}
$$

Letting the free variables be assigned arbitrarily: $x_{3}=\alpha, x_{4}=\beta$ gives all the solutions as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-\alpha+2 \beta \\
1+2 \alpha-2 \beta \\
\alpha \\
\beta
\end{array}\right]
$$

where α and β are arbitrary real numbers.

