Instructions. Do each problem showing your work. Answers alone are not sufficient. Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the text:
Section 1.1: 12, 14, 20
Section 1.3: 10, 14, 24, 36
Section 1.4: 4, 8, 12, 18, 28
Section 1.1:
12. The following table summarizes the needed calculations:

Function	$y^{\prime}(t)$	$2 y(t)$
$y_{1}(t)=0$	$y_{1}^{\prime}(t)=0$	$2 y_{1}(t)=0$
$y_{2}(t)=t^{2}$	$y_{2}^{\prime}(t)=2 t$	$2 y_{2}(t)=2 t^{2}$
$y_{3}(t)=3 e^{2 t}$	$y_{3}^{\prime}(t)=6 e^{2 t}$	$2 y_{3}(t)=6 e^{2 t}$
$y_{4}(t)=2 e^{3 t}$	$y_{4}^{\prime}(t)=6 e^{3 t}$	$2 y_{4}(t)=4 e^{3 t}$

To be a solution, the entries in the second and third columns need to be the same. Thus y_{1} and y_{3} are the only solutions.
14. We first write the differential equation in standard form: $y^{\prime \prime}=-4 y$. The following table summarizes the needed calculations:

Function	$y^{\prime \prime}(t)$	$-4 y(t)$
$y_{1}(t)=e^{2 t}$	$y_{1}^{\prime \prime}(t)=4 e^{2 t}$	$-4 y_{1}(t)=-4 e^{2 t}$
$y_{2}(t)=\sin 2 t$	$y_{2}^{\prime \prime}(t)=-4 \sin 2 t$	$-4 y_{2}(t)=-4 \sin 2 t$
$y_{3}(t)=\cos (2 t-1)$	$y_{3}^{\prime \prime}(t)-4 \cos (2 t-1)$	$-4 y_{3}(t)=-4 \cos (2 t-1)$
$y_{4}(t)=t^{2}$	$y_{4}^{\prime \prime}(t)=2$	$-4 y_{4}(t)=-4 t^{2}$

To be a solution, the entries in the second and third columns need to be the same. Thus y_{2} and y_{3} are solutions.
20.

$$
\begin{aligned}
y^{\prime}(t) & =-c e^{-t}+3 \\
-y(t)+3 t & =-c e^{-t}-3 t+3+3 t=-c e^{-t}+3
\end{aligned}
$$

Note that $y(t)$ is defined for all $t \in \mathbb{R}$.

Section 1.3:

10. The variables are already separated, so integrate both sides of the equation to get $y^{2} / 2=t^{2} / 2+c$, which we can rewrite as $y^{2}-t^{2}=k$ where $k=2 c \in \mathbb{R}$ is a constant. Since $y(2)=-1$, substitute $t=2$ and $y=-1$ to get that $k=(-1)^{2}-2^{2}=-3$. Thus the solution is given implicitly by the equation $y^{2}-t^{2}=-3$ or we can solve explicitly to get $y=-\sqrt{t^{2}-3}$, where the negative square root is used since $y(2)=-1<0$.
11. There is an equilibrium solution $y=0$. Separating variables give $y^{-2} y^{\prime}=t$ and integrating gives $-y^{-1}=t^{2} / 2+c$. Thus $y=-2 /\left(t^{2}+2 c\right), c$ a real constant. This is equivalent to writing $y=-2 /\left(t^{2}+c\right)$, c a real constant, since twice an arbitrary constant is still an arbitrary constant.
12. In standard form we get $y^{\prime}=y(y+1)$ from which we see $y=0$ and $y=-1$ are equilibrium solutions. The equilibrium solution $y(t)=0$ satisfies the initial condition $y(0)=0$ so $y(t)=0$ is the required solution.
13. The ambient temperature is $T_{a}=70^{\circ}$. Equation (13), page 35, gives $T(t)=70+k e^{r t}$ for the temperature of the coffee at time t. Since the initial temperature of the coffee is $T(0)=180$ we get $180=T(0)=70+k$. Thus $k=110$. The constant r is determined from the temperature at a second time: $140=T(3)=70+110 e^{3 r}$ so $r=\frac{1}{3} \ln \frac{7}{11} \approx-.1507$. Thus $T(t)=70+110 e^{r t}$, with r as calculated. The temperature requested is $T(5)=70+110\left(\frac{7}{11}\right)^{\frac{5}{3}} \approx 121.8^{\circ}$.

Section 1.4:
4. Divide by t to put the equation in the standard form

$$
y^{\prime}+\frac{1}{t} y=\frac{e^{t}}{t}
$$

In this case $p(t)=1 / t$, an antiderivative is $P(t)=\ln t$, and the integrating factor is $\mu(t)=t$. Now multiply the standard form equation by the integrating factor to get $t y^{\prime}+y=e^{t}$, the left hand side of which is a perfect derivative $(t y)^{\prime}$. (Note that this is just the original left hand side of the equation. Thus if we had recognized that the left hand side was already a perfect derivative, the preliminary steps could have been skipped for this problem, and we could have proceeded directly to the next step.) Thus the equation can be written as $(t y)^{\prime}=e^{t}$ and taking antiderivatives of both sides gives $t y=e^{t}+c$ where $c \in \mathbb{R}$ is a constant. Now divide by t to get

$$
y=\frac{e^{t}}{t}+\frac{c}{t}
$$

for the general solution.
8. In this case $p(t)=2$ and the integrating factor is $e^{\int 2 d t}=e^{2 t}$. Now multiply to get $e^{2 t} y^{\prime}+2 e^{2 t} y=e^{2 t} \sin t$, which simplifies to $\left(e^{2 t} y\right)^{\prime}=e^{2 t} \sin t$. Now integrate both sides to get $e^{2 t} y=\frac{1}{5}(-\cos t+2 \sin t) e^{2 t}+c$, where we computed $\int e^{2 t} \sin t$ by parts two times. Dividing by $e^{2 t}$ gives $y=\frac{1}{5}(2 \sin t-\cos t)+c e^{-2 t}$.
12. The given differential equation is in standard form, $p(t)=a$, an antiderivative is $P(t)=a t$, and the integrating factor is $\mu(t)=e^{a t}$. Now multiply by the integrating factor to get

$$
e^{a t} y^{\prime}+a e^{a t} y=b e^{a t}
$$

the left hand side of which is a perfect derivative $\left(\left(e^{a t}\right) y\right)^{\prime}$. Thus

$$
\left(\left(e^{a t}\right) y\right)^{\prime}=b e^{a t} .
$$

If $a \neq 0$ then taking antiderivatives of both sides gives $e^{a t} y=\frac{b}{a} e^{a t}+c$ where $c \in \mathbb{R}$ is a constant. Now multiply by $e^{-a t}$ to get $y=\frac{b}{a}+c e^{-a t}$ for the general solution. In the case $a=0$ then $y^{\prime}=b$ and $y=b t+c$.
18. The given equation is in standard form, $p(t)=a$, an antiderivative is $P(t)=a t$, and the integrating factor is $\mu(t)=e^{a t}$. Now multiply by the integrating factor to get $e^{a t} y^{\prime}+a e^{a t} y=t^{n}$, the left hand side of which is a perfect derivative $\left(e^{a t} y\right)^{\prime}$. Thus $\left(e^{a t} y\right)^{\prime}=t^{n}$ and taking antiderivatives of both sides gives $e^{a t} y=\frac{t^{n+1}}{n+1}+c$ where $c \in \mathbb{R}$ is a constant. Now multiply by $e^{-a t}$ to get $y=\frac{t^{n+1}}{n+1} e^{-a t}+c e^{-a t}$ for the general solution.
28. Let $y(t)$ be the amount of salt in the tank at time t. Since pure water is initially in the tank, the initial value is $y(0)=0$. Determine a differential equation for $y(t)$ from the input and output rate of salt:
input rate: input rate $=1 \frac{\mathrm{~L}}{\min } \times 10 \frac{\mathrm{~g}}{\mathrm{~L}}=10 \frac{\mathrm{~g}}{\min }$.
output rate: \quad output rate $=1 \frac{\mathrm{~L}}{\min } \times \frac{y(t)}{10} \frac{\mathrm{~g}}{\mathrm{~L}}=\frac{y(t)}{10} \frac{\mathrm{~g}}{\min }$.
Since $y^{\prime}=$ input rate - output rate, it follows that $y(t)$ satisfies the initial value problem

$$
y^{\prime}=10-\frac{1}{10} y, \quad y(0)=0
$$

Put in standard form, this equation becomes $y^{\prime}+\frac{1}{10} y=10$. The coefficient function is $p(t)=\frac{1}{10}, P(t)=\int p(t) d t=t / 10$, and the integrating factor is $\mu(t)=e^{t / 10}$. Multiplying the standard form equation by the integrating factor gives $\left(e^{t / 10} y\right)^{\prime}=$ $10 e^{t / 10}$. Integrating and simplifying gives $y=100+c e^{-t / 10}$. The initial condition $y(0)=0$ implies $c=-100$ so $y=100-100 e^{-t / 10}$. After 10 minutes we have $y(10)=$ $100-100 e^{-1} \mathrm{~g}$ of salt. The concentration is thus $\left(100-100 e^{-1}\right) / 10=10-10 e^{-1} \mathrm{~g} / \mathrm{L}$

