Instructions. Do each problem showing your work. Answers alone are not sufficient. Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the text:
Page 177: 12, 24
Page 185: 16, 20, 24
Page 235: 6, 10, 16
Page 291: 2, 8, 10
Page 243: 10, 16, 20
Page 177:
12. $q(s)=s^{2}-10 s+25=(s-5)^{2}$, hence the root of $q(s)$ is 5 with multiplicity 2 . Thus $\mathcal{B}_{q}=\left\{e^{5 t}, t e^{5 t}\right\}$
24. We complete the square to get $q(s)=\left((s-4)^{2}+2^{2}\right)^{3}$. Thus $q(s)$ has complex roots $4 \pm 2 i$ with multiplicity 3 . If follows that $\mathcal{B}_{q}=\left\{e^{4 t} \cos 2 t, e^{4 t} \sin 2 t, t e^{4 t} \cos 2 t, t e^{4 t} \sin 2 t, t^{2} e^{4 t} \cos 2 t, t^{2} e^{4 t} \sin 2 t\right\}$

Page 185:
16. The roots are -8 with multiplicity 2 and $\pm 3 i$ with multiplicity 3 . Hence $\mathcal{B}_{q}=$ $\left\{e^{-8 t}, t e^{-8 t}, \cos 3 t, \sin 3 t, t \cos 3 t, t \sin 3 t, t^{2} \cos 3 t, t^{2} \sin 3 t\right\}$.
20. The roots are 1 with multiplicity 1,2 with multiplicity 2 , and and 3 with multiplicity 3. Hence $\mathcal{B}_{q}=\left\{e^{t}, e^{2 t}, t e^{2 t}, e^{3 t}, t e^{3 t}, t^{2} e^{3 t}\right\}$.
24. $s^{3}+8=(s+2)\left(s^{2}-2 s+4\right)=(s+2)\left(s^{2}-2 s+1+3\right)=(s+2)\left((s-1)^{2}+(\sqrt{3})^{2}\right)$; hence $\mathcal{B}_{q}=\left\{e^{-2 t}, e^{t} \cos \sqrt{3} t, e^{t} \sin \sqrt{3} t\right\}$

Page 235:
6. The characteristic polynomial is $q(s)=s^{2}-3 s-10=(s-5)(s+2)$ so $\mathcal{B}_{q}=\left\{e^{5 t}, e^{-2 t}\right\}$ and the general solution takes the form $y(t)=c_{1} e^{5 t}+c_{2} e^{-2 t}, c_{1}, c_{2} \in \mathbb{R}$
10. The characteristic polynomial is $q(s)=s^{2}+8 s+25=(s+4)^{2}+9$ so $\mathcal{B}_{q}=$ $\left\{e^{-4 t} \cos 3 t, e^{-4 t} \sin 3 t\right\}$ and the general solution takes the form $y(t)=c_{1} e^{-4 t} \cos 3 t+$ $c_{2} e^{-4 t} \sin 3 t, c_{1}, c_{2} \in \mathbb{R}$
16. The characteristic polynomial is $q(s)=s^{2}+4 s+13=(s+2)^{2}+9$ so $\mathcal{B}_{q}=$ $\left\{e^{-2 t} \cos 3 t, e^{-2 t} \sin 3 t\right\}$ and the general solution takes the form $y(t)=c_{1} e^{-2 t} \cos 3 t+$ $c_{2} e^{-2 t} \sin 3 t$. The initial conditions imply that $c_{1}=1$ and $-2 c_{1}+3 c_{2}=-5$. Solving gives $c_{1}=1$ and $c_{2}=-1$. Thus $y=e^{-2 t} \cos 3 t-e^{-2 t} \sin 3 t$.

Page 291:
2. The characteristic polynomial is $q(s)=s^{3}-6 s^{2}+12 s-8=(s-2)^{3}$. Thus $\mathcal{B}_{q}=\left\{e^{2 t}, t e^{2 t}, t^{2} e^{2 t}\right\}$. It follows that $y(t)=\left(c_{1}+c_{2} t+c_{3} t^{2}\right) e^{2 t}$
8. The characteristic polynomial is $q(s)=\left(s^{2}+9\right)^{3}$. Thus

$$
\mathcal{B}_{q}=\left\{\cos 3 t, \sin 3 t, t \cos 3 t, t \sin 3 t, t^{2} \cos 3 t, t^{2} \sin 3 t\right\} .
$$

It follows that $y(t)=c_{1} \cos 3 t+c_{2} \sin 3 t+c_{3} t \cos 3 t+c_{4} t \sin 3 t+c_{5} t^{2} \cos 3 t+c_{6} t^{2} \sin 3 t$.
10. The characteristic polynomial is $q(s)=s^{3}+s^{2}-s-1=(s-1)(s+1)^{2}$. Thus $\mathcal{B}_{q}=\left\{e^{t}, e^{-t}, t e^{-t}\right\}$. It follows that $y(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} t e^{-t}$. Since

$$
\begin{aligned}
y(t) & =c_{1} e^{t}+c_{2} e^{-t}+c_{3} t e^{-t} \\
y^{\prime}(t) & =c_{1} e^{t}-c_{2} e^{-t}+c_{3}(1-t) e^{-t} \\
y^{\prime \prime}(t) & =c_{1} e^{t}+c_{2} e^{-t}+c_{3}(-2+t) e^{-t}
\end{aligned}
$$

we have

$$
\begin{aligned}
1=y(0) & =c_{1}+c_{2} \\
4=y^{\prime}(0) & =c_{1}-c_{2}+c_{3} \\
-1=y^{\prime \prime}(0) & =c_{1}+c_{2}-2 c_{3}
\end{aligned}
$$

and hence $c_{1}=2, c_{2}=-1$, and $c_{3}=1$. Thus $y=2 e^{t}-e^{-t}+t e^{-t}$.
Page 243:
10. The characteristic polynomial is $q(s)=s^{2}+3 s-4=(s+4)(s-1)$. Since $\mathcal{L}\left\{e^{2 t}\right\}=$ $1 /(s-2)$, we set $v(s)=s-2$. Then $q(s) v(s)=(s+4)(s-1)(s+2)$. Since $\mathcal{B}_{q v}=$ $\left\{e^{-4 t}, e^{t}, e^{2 t}\right\}$ and $\mathcal{B}_{q}=\left\{e^{-4 t}, e^{t}\right\}$ we have $y_{p}=a_{1} e^{2 t}$, a test function. Substituting y_{p} into the differential equation gives $6 a_{1} e^{2 t}=e^{2 t}$. It follows that $a_{1}=1 / 6$. The general solution is $y=\frac{1}{6} e^{2 t}+c_{1} e^{t}+c_{2} e^{-4 t}$.
16. We use the principle of superposition and break this problem into two separate parts: $y^{\prime \prime}+4 y=1$ and $y^{\prime \prime}+4 y=e^{t}$. For $y^{\prime \prime}+4 y=1$: The characteristic polynomial is $q(s)=s^{2}+4$. Since $\mathcal{L}\{1\}=1 / s$, we set $v(s)=s$. Then $q(s) v(s)=\left(s^{2}+4\right) s$. Since $\mathcal{B}_{q v}=\{\cos 2 t, \sin 2 t, 1\}$ and $\mathcal{B}_{q}=\{\cos 2 t, \sin 2 t\}$ we have $y_{p_{1}}=a_{1}$, a test function. Substituting $y_{p_{1}}$ into the differential equation gives $4 a_{1}=1$. It follows that $a_{1}=1 / 4$ and $y_{p_{1}}=1 / 4$. For $y^{\prime \prime}+4 y=e^{t}$: Since $\mathcal{L}\left\{e^{t}\right\}=1 /(s-1)$ we set $v(s)=s-1$. Then $q(s) v(s)=\left(s^{2}+4\right)(s-1)$ and $\mathcal{B}_{q v}=\left\{\cos 2 t, \sin 2 t, e^{t}\right\}$. It follows that $y_{p_{2}}=a_{1} e^{t}$ is a test function. Substituting $y_{p_{2}}$ into the differential equation gives $5 a_{1} e^{t}=e^{t}$ from which we get $a_{1}=1 / 5$. Thus $y_{p_{2}}=(1 / 5) e^{t}$. The general solution is $y=\frac{1}{4}+\frac{1}{5} e^{t}+c_{1} \cos (2 t)+c_{2} \sin (2 t)$.
20. The characteristic polynomial is $q(s)=s^{2}+1$, an irreducible quadratic. Since $\mathcal{L}\{2 \sin t\}=2 /\left(s^{2}+1\right)$, we set $v(s)=s^{2}+1$. Then $q(s) v(s)=\left(s^{2}+1\right)^{2}$. Since $\mathcal{B}_{q v}=$ $\{\cos t, \sin t, t \cos t, t \sin t\}$ and $\mathcal{B}_{q}=\{\cos t, \sin t\}$ we have $y_{p}=a_{1} t \cos t+a_{2} t \sin t$, a test function. Substituting y_{p} into the differential equation gives $-2 a_{1} \sin t+$ $2 a_{2} \cos t=2 \sin t$. Linear independence implies $-2 a_{1}=2$ and $2 a_{2}=0$. Thus $a_{1}=-1$ and $a_{2}=0$. The general solution is $y=-t \cos t+c_{1} \sin t+c_{2} \cos t$.

