Instructions. Do each problem showing your work. Answers alone are not sufficient. Label each problem clearly, and write neatly, in a logical sequence.

Do the following problems from the text: Page 265: 12, 14

12. The mass is m = 32/32 = 1 slug. The spring constant k is given by k = 32/2 = 16. Since no external force is mentioned we may assume it is zero. The initial conditions are y(0) = -1 and y'(0) = 0. The equation y'' + 8y' + 16y = 0, y(0) = -1, y'(0) = 0 models the motion of the body. The characteristic polynomial is $q(s) = (s + 4)^2$. Thus

$$y = c_1 e^{-4t} + c_2 t e^{-4t}$$

The initial conditions imply $c_1 = 1$ and $c_2 = 4$. Thus

$$y = (1+4t)e^{-4t}$$
.

The discriminant of the characteristic equation is $D = 8^2 - 4 \cdot 1 \cdot 16 = 0$ so the motion is critically damped free motion. The equation y(t) = 0 implies t = -1/4. So there is no positive time where the body crosses equilibrium.

14. The mass is m = 2. The spring constant k is given by k = 5/1 = 5. The damping constant is given by $\mu = 6/1 = 6$. Since no external force is mentioned we may assume it is zero. The initial conditions are y(0) = .1 and y'(0) = .1. The equation 2y'' + 6y' + 5y = 0, y(0) = .1, y'(0) = .1 models the motion of the body. The characteristic polynomial is $q(s) = 2s^2 + 6s + 5 = 2\left(\left(s + \frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right)$. Thus

$$y = c_1 e^{-\frac{3}{2}t} \cos \frac{1}{2}t + c_2 e^{-\frac{3}{2}t} \sin \frac{1}{2}t.$$

The initial conditions imply $c_1 = \frac{1}{10}$ and $c_2 = \frac{1}{2}$. So

$$y = \frac{1}{10}e^{-\frac{3}{2}t}\cos\frac{1}{2}t + \frac{1}{2}e^{-\frac{3}{2}t}\sin\frac{1}{2}t.$$

The discriminant of the characteristic equation is $D = 6^2 - 4 \cdot 2 \cdot 5 = -4 < 0$ so the motion is underdamped free motion and crosses equilibrium. If $A = \left(\frac{1}{100} + \frac{1}{4}\right)^{\frac{1}{2}} = \frac{\sqrt{26}}{10}$ and $\phi = \arctan 5 = 1.3734$ then we can write $y = \frac{\sqrt{26}}{10}e^{-\frac{3}{2}t}\cos\left(\frac{1}{10}t - 1.3734\right)$.

Page 337: 12, 18

12. 1. y(t) = 12. y(t) = t3. $y(t) = e^{-t}$ 4. $y(t) = \cos 2t$ 18. If $y = \frac{1}{6}t^5$ then $y' = \frac{5}{6}t^4$ and $y'' = \frac{20}{6}t^3$ so that $\mathbf{L}y = t^2(\frac{20}{6}t^3) - 4t(\frac{5}{6}t^4) + 6(\frac{1}{6}t^5) = t^5$. Part (1) follows. If $y = t^2$ then $\mathbf{L}y = t^2(2) - 4t(2t) + 6(t^2) = 0$. It follows that $y = t^2$ is a solution to $\mathbf{L}y = 0$. If $y = t^3$ then $\mathbf{L}y = t^2(6t) - 4t(3t^2) + 6t^3 = 0$. Part (2) now follows. By linearity every function of the form $y(t) = \frac{1}{6}t^5 + c_1t^2 + c_2t^3$ is a solution to $\mathbf{L}y = t^5$, where c_1 and c_2 are constants. If we want a solution to $\mathbf{L}(y) = t^5$ with y(0) = a and y'(0) = b, then we need to solve for c_1 and c_2 : Since $y(t) = \frac{1}{6}t^5c_1t^2 + c_2t^3$ we have $y'(t) = \frac{5}{6}t^5 + 2c_1t + 3c_2t^2$. Hence,

$$a = y(1) = \frac{1}{6} + c_1 + c_2$$

 $b = y'(1) = \frac{5}{6} + 2c_1 + 3c_2.$

These equations give $c_1 = 3a - b + \frac{1}{3}$ and $c_2 = b - 2a - \frac{1}{2}$. Particular choices of a and b give the answers for Part (3).

(3)a. $y = \frac{1}{6}t^5 + \frac{10}{3}t^2 - \frac{5}{2}t^3$ (3)b. $y = \frac{1}{6}t^5 - \frac{2}{3}t^2 + \frac{1}{2}t^3$ (3)c. $y = \frac{1}{6}t^5 - \frac{17}{3}t^2 + \frac{9}{2}t^3$ (3)d. $y = \frac{1}{6}t^5 + (\frac{1}{3} + 3a - b)t^2 + (-\frac{1}{2} - 2a + b)t^3$

Page 353: 2, 8, 10, 14

- 2. The indicial polynomial is $Q(s) = 2s^2 7s + 3 = (2s 1)(s 3)$. There are two distinct roots $\frac{1}{2}$ and 3. The fundamental set is $\left\{t^{\frac{1}{2}}, t^3\right\}$. The general solution is $y(t) = c_1 t^{\frac{1}{2}} + c_2 t^3$.
- 8. The indicial polynomial is

$$Q(s) = s^{2} - s + 1 = s^{2} - s + \frac{1}{4} + \frac{3}{4} = \left(s - \frac{1}{2}\right)^{2} + \frac{\sqrt{3}}{2}^{2}$$

There are two complex roots, $\frac{1+i\sqrt{3}}{2}$ and $\frac{1-i\sqrt{3}}{2}$. The fundamental set is

$$\left\{t^{\frac{1}{2}}\sin\left(\frac{\sqrt{3}}{2}\ln t\right), t^{\frac{1}{2}}\cos\left(\frac{\sqrt{3}}{2}\ln t\right)\right\},\,$$

and the general solution is $y(t) = c_1 t^{\frac{1}{2}} \sin\left(\frac{\sqrt{3}}{2}\ln t\right) + c_2 t^{\frac{1}{2}} \cos\left(\frac{\sqrt{3}}{2}\ln t\right).$

10. The indicial polynomial is $Q(s) = s^2 + 4$. There are two complex roots, 2i and -2i. The fundamental set is $\{\cos(2\ln t), \sin(2\ln t)\}$. The general solution is $y(t) = c_1 \cos(2\ln t) + c_2 \sin(2\ln t)$.

14. The indicial polynomial is $Q(s) = s^2 + 4$. There are two complex roots, $\pm 2i$. The fundamental set is $\{\cos(2\ln t), \sin(2\ln t)\}$. The general solution is $y(t) = c_1 \cos(2\ln t) + c_2 \sin(2\ln t)$. The initial conditions imply

$$c_1 = -3$$

 $2c_2 = 4.$

Thus $c_1 = -3$ and $c_2 = 2$. Hence $y = -3\cos(2\ln t) + 2\sin(2\ln t)$

Page 379: 8, 14

- 8. A fundamental set is $\{\cos t, \sin t\}$. The matrix equation $\begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} 0 \\ \sec t \end{pmatrix}$ implies $u_1'(t) = -\tan t$ and $u_2'(t) = 1$. Hence $u_1(t) = \ln(\cos t), u_2(t) = t$, and $y_p(t) = \cos t \ln(\cos t) + t \sin t$. The general solution is $y(t) = \cos t \ln(\cos t) + t \sin t + c_1 \cos t + c_2 \sin t$.
- 14. When put in standard form one sees that $f(t) = te^{-t}$. The matrix equation $\begin{pmatrix} t-1 & e^{-t} \\ 1 & -e^{-t} \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} 0 \\ te^{-t} \end{pmatrix}$ implies $u_1'(t) = e^{-t}$ and $u_2'(t) = 1 t$. Hence $u_1(t) = -e^{-t}$, $u_2(t) = t \frac{t^2}{2}$, and $y_p(t) = -(t-1)e^{-t} + (t \frac{t^2}{2})e^{-t} = \frac{-t^2}{2}e^{-t} + e^{-t}$. Since e^{-t} is a homogeneous solution we can write the general solution as $y(t) = \frac{-t^2}{2}e^{-t} + c_1(t-1) + c_2e^{-t}$.