The syllabus for Exam 3 is Sections 3.6, 5.1 to 5.3 , 5.6, and 6.1 to 6.4. You should review the assigned exercises in these sections. Following is a brief list (not necessarily complete) of terms, skills, and formulas with which you should be familiar.

- Know how to set up the equation of motion of a spring system with dashpot:

$$
m y^{\prime \prime}+\mu y^{\prime}+k y=f(t)
$$

where m is the mass, μ is the damping constant, k is the spring constant, and $f(t)$ is the applied force. Know how to determine if the system is underdamped, critically damped, or overdamped.

- Know how to solve the Cauchy-Euler equation

$$
a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0
$$

where a, b, and c are real constants by means of the roots r_{1}, r_{2} of the indicial equation

$$
q(r)=\operatorname{ar}(r-1)+b r+c=0 .
$$

- If $\left\{y_{1}(t), y_{2}(t)\right\}$ is a fundamental solution set for the homogeneous equation

$$
y^{\prime \prime}+b(t) y^{\prime}+c(t) y=0
$$

know how to use the method of variation of parameters to find a particular solution y_{p} of the non-homogeneous equation

$$
y^{\prime \prime}+b(t) y^{\prime}+c(t) y=f(t) .
$$

In this method, it is not necessary for $f(t)$ to be an elementary function.
Variation of Parameters: Find y_{p} in the form $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ where u_{1} and u_{2} are unknown functions whose derivatives satisfy the following two equations:

$$
\begin{align*}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(t) . \tag{*}
\end{align*}
$$

Solve the system (*) for u_{1}^{\prime} and u_{2}^{\prime}, and then integrate to find u_{1} and u_{2}.

- Know what it means for a function to have a jump discontinuity and to be piecewise continuous.
- Know how to piece together solutions on different intervals to produce a solution of one of the initial value problems

$$
y^{\prime}+a y=f(t), \quad y\left(t_{0}\right)=y_{0},
$$

or

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1},
$$

where $f(t)$ is a piecewise continuous function on an interval containing t_{0}.

- Know what the unit step function (also called the Heaviside function) $(h(t-c))$ and the on-off switches $\left(\chi_{[a, b)}\right)$ are:

$$
\begin{aligned}
h(t-c)=h_{c}(t) & =\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c, \\
1 & \text { if } c \geq t
\end{array} \quad \text { and },\right. \\
\chi_{[a, b)} & =\left\{\begin{array}{ll}
1 & \text { if } a \leq t<b, \\
0 & \text { otherwise }
\end{array}=h(t-a)-h(t-b),\right.
\end{aligned}
$$

and know how to use these two functions to rewrite a piecewise continuous function in a manner which is convenient for computation of Laplace transforms.

- Know the second translation principle:

$$
\mathcal{L}\{f(t-c) h(t-c)\}=e^{-c s} F(s)
$$

and how to use it (particulary in the form):

$$
\mathcal{L}\{g(t) h(t-c)\}=e^{-c s} \mathcal{L}\{g(t+c)\}
$$

as a tool for calculating the Laplace transform of piecewise continuous functions.

- Know how to use the second translation principle to compute the inverse Laplace transform of functions of the form $e^{-c s} F(s)$.
- Know how to use the skills in the previous two items in conjunction with the formula for the Laplace transform of a derivative to solve differential equations of the form

$$
y^{\prime}+a y=f(t), \quad y(0)=y_{0}
$$

and

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t), \quad y(0)=y_{0}, y^{\prime}(0)=y_{1},
$$

where $f(t)$ is a piecewise continuous forcing function.

- Know the formula for the Laplace transform of the Dirac delta function $\delta(t-c)$:

$$
\mathcal{L}\{\delta(t-c)\}=e^{-c s} .
$$

Know how to use this formula to solve differential equations with impulsive forcing function:

$$
y^{\prime}+a y=K \delta(t-c), \quad y(0)=y_{0}
$$

and

$$
y^{\prime \prime}+a y^{\prime}+b y=K \delta(t-c), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} .
$$

The following is a small set of exercises of types identical to those already assigned.

1. Solve each of the following Cauchy-Euler differential equations
(a) $t^{2} y^{\prime \prime}-7 t y^{\prime}+15 y=0$
(b) $4 t^{2} y^{\prime \prime}-8 t y^{\prime}+9 y=0$
(c) $t^{2} y^{\prime \prime}-12 y=0$
(d) $t^{2} y^{\prime \prime}+t y^{\prime}+16 y=0$
(e) $4 t^{2} y^{\prime \prime}-7 t y^{\prime}+6 y=0$
(f) $t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y=0$
2. Find a solution of each of the following differential equations by using the method of variation of parameters. In each case, \mathcal{S} denotes a fundamental set of solutions of the associated homogeneous equation.
(a) $y^{\prime \prime}+2 y^{\prime}+y=t^{-1} e^{-t} ; \quad \mathcal{S}=\left\{e^{-t}, t e^{-t}\right\}$
(b) $y^{\prime \prime}+9 y=9 \sec 3 t ; \quad \mathcal{S}=\{\cos 3 t, \sin 3 t\}$
(c) $t^{2} y^{\prime \prime}+2 t y^{\prime}-6 y=t^{2} ; \quad \mathcal{S}=\left\{t^{2}, t^{-3}\right\}$
(d) $y^{\prime \prime}+4 y^{\prime}+4 y=t^{1 / 2} e^{-2 t} ; \quad \mathcal{S}=\left\{e^{-2 t}, t e^{-2 t}\right\}$
3. Graph each of the following piecewise continuous functions.
(a) $f(t)= \begin{cases}2 & \text { if } 0 \leq t<1, \\ 3-2 t & \text { if } t \geq 1 .\end{cases}$
(b) $f(t)=e^{-2(t-1)} h(t-1)$
(c) $f(t)=t \chi_{[0,2)}-3 \chi[2,4)+(t-4)^{2} h(t-4)$
4. Compute the Laplace transform of each of the following functions.
(a) $f(t)=t^{2} h(t-2)$
(b) $f(t)=(t-1)^{2} \chi_{[2,4)}$
(c) $f(t)= \begin{cases}t & \text { if } 0 \leq t<1, \\ t^{2}+t-1 & \text { if } 1 \leq t<2 \\ -2 & \text { if } t \geq 2\end{cases}$
5. Compute the inverse Laplace transform of each of the following functions.
(a) $F(s)=\frac{s e^{-2 s}}{s^{2}-9}$
(b) $F(s)=\left(1+e^{-\pi s / 2}\right) \frac{s-1}{s^{2}+2 s+10}$
6. Solve each of the following differential equations.
(a) $y^{\prime}+5 y=\left\{\begin{array}{ll}2 & \text { if } 0 \leq t<2 \\ t+1 & \text { if } t \geq 2\end{array} \quad y(0)=0\right.$.
(b) $y^{\prime \prime}+4 y=(t+1) h(t-2), \quad y(0)=0, y^{\prime}(0)=1$.
(c) $y^{\prime \prime}+4 y=4 \delta(t-2), \quad y(0)=-1, y^{\prime}(0)=1$.
7. A mass hung from a spring behaves according to the equation

$$
m y^{\prime \prime}+\mu y^{\prime}+k y=0,
$$

where m is the mass, μ is the damping constant, and k is the spring constant. Suppose that $m=1 \mathrm{~kg}, \mu=p \mathrm{~kg} \mathrm{~m}$, and $k=2 \mathrm{~N} / \mathrm{m}(\mathrm{N}=\mathrm{Newton})$. Suppose the following initial conditions are imposed: $y(0)=1 \mathrm{~m}$, and $y^{\prime}(0)=-1 \mathrm{~m} / \mathrm{s}^{2}$. Determine the values of p for which the system is (a) overdamped, (b) critically damped, (c) underdamped.
8. Find the unique solution of the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, \quad y(0)=3, \quad y^{\prime}(0)=-1 .
$$

Is the equation under damped or over damped? Does $y(t)=0$ for some $t>0$? If so, find the first $t>0$ for which $y(t)=0$. Sketch the graph of your solution.

Answers

1. (a) $y=c_{1} t^{3}+c_{2} t^{5}$
(b) $y=t^{3 / 2}\left(c_{1}+c_{2} \ln |t|\right)$
(c) $y=c_{1} t^{4}+c_{2} t^{-3}$
(d) $y=c_{1} \cos (4 \ln |t|)+c_{2} \sin (4 \ln |t|)$
(e) $y=c_{1} t^{3 / 4}+c_{2} t^{2}$
(f) $y=t^{-2}\left(c_{1}+c_{2} \ln |t|\right)$
2. (a) $y_{p}(t)=(t \ln |t|) e^{-t}$
(b) $y_{p}(t)=(\ln |\cos 3 t|) \cos 3 t+3 t \sin 3 t$
(c) $y_{p}(t)=(1 / 5) t^{2} \ln |t|$
(d) $y_{p}(t)=(4 / 15) t^{5 / 2} e^{-2 t}$
3. (a) $F(s)=e^{-2 s}\left(\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}\right)$
(b) $F(s)=e^{-2 s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right)-e^{-4 s}\left(\frac{2}{s^{3}}+\frac{6}{s^{2}}+\frac{9}{s}\right)$
(c) $F(s)=\frac{1}{s^{2}}+e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}\right)-e^{-2 s}\left(\frac{2}{s^{3}}+\frac{5}{s^{2}}+\frac{7}{s}\right)$
4. (a) $f(t)=\frac{1}{2}\left(e^{3(t-2)}+e^{-3(t-2)}\right) h(t-2)$
(b) $f(t)=e^{-t}\left(\cos 3 t-\frac{2}{3} \sin 3 t\right)+e^{-(t-\pi / 2)}\left(\cos 3(t-\pi / 2)-\frac{2}{3} \sin 3(t-\pi / 2)\right) h(t-\pi / 2)$
5. (a) $y(t)=\frac{2}{5}\left(1-e^{-5 t}\right)+\frac{1}{25}\left(5(t-2)+4-4 e^{-5(t-2)}\right) h(t-2)$
(b) $y(t)=\frac{1}{2} \sin 2 t+h(t-2)\left((t-2)+3-3 \cos 2(t-2)-\frac{1}{2} \sin 2(t-2)\right)$
(c) $y(t)=\frac{1}{2} \sin 2 t-\cos 2 t+2 h(t-2) \sin 2(t-2)$
6. (a) $p>\sqrt{8}$, (b) $p=\sqrt{8}$, (c) $0<p<\sqrt{8}$
7. Solution. The characteristic polynomial is $p(s)=s^{2}+2 s+5=(s+1)^{2}+4$ which has roots $-1 \pm 2 i$. Thus, the general solution of the homogeneous equation is

$$
y=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t
$$

We need to choose c_{1} and c_{2} to satisfy the initial conditions. Since

$$
y^{\prime}=-c_{1} e^{-t} \cos 2 t-2 c_{1} e^{-t} \sin 2 t+2 c_{2} e^{-t} \cos 2 t-c_{2} e^{-t} \sin 2 t
$$

this means that c_{1} and c_{2} must satisfy the system of equations

$$
\begin{aligned}
3 & =y(0)=c_{1} \\
-1 & =y^{\prime}(0)=-c_{1}+2 c_{2}
\end{aligned}
$$

Hence, $c_{1}=3$ and $c_{2}=1$, so that the solution of the initial value problem is

$$
y=3 e^{-t} \cos 2 t+e^{-t} \sin 2 t
$$

To answer the rest of the question, note that the characteristic polynomial has a pair of complex conjugate roots. Hence, the equation represents an underdamped system. To find the first $t>0$ such that $y(t)=0$, note that

$$
\begin{aligned}
y(t)=0 & \Longleftrightarrow 3 \cos 2 t+\sin 2 t=0 \\
& \Longleftrightarrow \tan 2 t=-3 \\
& \Longleftrightarrow 2 t \approx 1.8925+\pi k \text { for some integer } k \\
& \Longleftrightarrow t \approx .9462+\frac{\pi}{2} k \text { for some integer } k
\end{aligned}
$$

The smallest such positive t is obtained for $k=0$ and hence the first time that $y(t)=0$ for $t>0$ occurs for $t \approx .9462$.

