Math 2070 Section 1
 Mathematical Methods in Engineering
 Fall 2015
 TWThF 9:30-10:20 Tureaud 220

Instructor: William A. Adkins
350 Lockett Hall
Tel: 578-1601
E-mail: adkins@math.lsu.edu
Class Web Site: http://www.math.lsu.edu/~adkins/m2070.html
Office Hours: 11:00 A.M. - 12:00 Noon MTWTh
Other times by appointment

Text

Ordinary Differential Equations by W. A. Adkins and M. G. Davidson, Springer 2012. (ISNB 978-1-4614-36171) At http://link.springer.com.libezp.lib.lsu.edu/book/10.1007\%2F978-1-4614-3618-8 an e-book version of the text can be downloaded by LSU students through the LSU library. You will need to log on to your MyLSU account to access this link. A student's solution manual can be downloaded from the Springer.com website for the text. A supplement on Fourier series methods will also be used. It will be available later in the semester on the class website.

Syllabus

This is an introductory course in ordinary differential equations with a particular emphasis on linear differential equations. A nuance of the present course is an early introduction of the Laplace transform into the theory, and then subsequently using the Laplace transform to extract much of the basic information about constant coefficient linear ordinary differential equations in an expedited manner. We will also cover Fourier series methods for solving some ordinary differential equations and an introduction to boundary value problems for some partial differential equations. The sections of the text that we will cover are:

$$
\begin{aligned}
& \text { Chapter 1: } 1.1-1.6 \\
& \text { Chapter 2: } 2.1-2.7 \\
& \text { Chapter 3: } 3.1-3.7 \\
& \text { Chapter 4: } 4.1-4.3 \\
& \text { Chapter 5: } 5.1-5.3,5.5,5.6 \\
& \text { Chapter 6: } 6.1-6.5 \\
& \text { Chapter 8: } 8.1-8.4 \\
& \text { Chapter 9: 9.1-9.4 } \\
& \text { Fourier Series Supplement } \\
& \quad \text { Examinations }
\end{aligned}
$$

There will be 4 in-class exams and a 2-hour final examination. Exam dates are:

Exam 1	September 15
Exam 2	October 8
Exam 3	November 3
Exam 4	November 24
Final Exam	Dec 11 (Friday) 7:30-9:30 AM

Quizzes

There will be 10-15 minute quizzes given on an irregular basis. Quizzes will be considered as part of your homework grade. There will be no make-ups for missed quizzes.

Grade

A grade curve for each exam will be determined at the time of the exam. Additionally, a grade curve will be determined for the cumulative total of all quizzes and graded homework. The raw score on each exam will be translated to a number T between 0 and 100 by the following procedure, which is best illustrated by means of a numerical example. Suppose, as an example, that the exam has a total possible of 75 points and the grade curve is given by the table:

$$
\begin{array}{cc}
\mathrm{A} & 66-75 \\
\mathrm{~B} & 56-65 \\
\mathrm{C} & 47-55 \\
\mathrm{D} & 38-46 \\
\mathrm{~F} & 0-38
\end{array}
$$

Suppose your raw score on the exam was 52 , which would be a \mathbf{C} on the above curve. Just linearly interpolate the interval [47,56] to the interval [70, 80], which is the standard range for \mathbf{C} on the 10 point scale. Thus, 52 is interpolated to

$$
70+10 \times \frac{52-47}{56-47}=76
$$

Thus, the normalized score T would be 76 . Note that this is not the same as the percentage, which would be 69% in this case. As another example, the raw score 72 (an A) would be normalized to the score

$$
T=90+10 \times \frac{72-66}{75-66}=97
$$

The raw and the normalized scores will be given to you on each exam at the time it is returned.
The course grade is computed from a weighted average of the normalized scores on the four exams, the quizzes and the final exam. If T_{1}, T_{2}, T_{3} and T_{4}, denote your normalized scores on the 4 in-class exams, Q denotes your normalized score on the homework and quizzes, and E denotes your normalized final exam score, then your score G for the course is determined by the formula:

$$
G=.15\left(T_{1}+T_{2}+T_{3}+T_{4}\right)+.15 Q+.25 E
$$

Thus, each in-class exam counts 15%, the homework and quizzes count 15%, and the final exam counts 25%. If it is to your advantage to do so, the lowest of the four exam scores will be replaced by the final exam score E. The number G will then be translated into the course letter grade by the scale:

A+	$G \geq 97$
A	$93 \leq G<97$
A-	$90 \leq G<93$
B+	$87 \leq G<90$
B	$83 \leq G<87$
B-	$80 \leq G<83$
C+	$77 \leq G<80$
C	$73 \leq G<77$
C-	$70 \leq G<73$
D+	$67 \leq G<70$
D	$63 \leq G<67$
D-	$60 \leq G<63$
F	$G<60$

Homework

Homework is assigned daily, but only a small portion will be collected and graded. Doing the homework exercises as they are assigned, both graded and ungraded problems, and seeking help (preferably from me) for those that give you difficulty, is the best strategy for a successful completion of the course. The homework assignments and any supplemental materials for the course will be posted athttp://www.math.lsu.edu/~adkins/m2070.html. You should check this website regularly for the assignments and any supplemental materials.

