Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without supporting work. Put your name on each page of your paper.

1. [16 Points] Find all solutions of the following system of linear equations. Be sure to show all your steps!

$$
\begin{aligned}
x_{1}+2 x_{2} & -2 x_{3}=-8 \\
3 x_{1}+x_{2} & +9 x_{3}=1 \\
x_{1} & +4 x_{3}=2
\end{aligned}
$$

- Solution. The augmented matrix of the system is

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 2 & -2 & -8 \\
3 & 1 & 9 & 1 \\
1 & 0 & 4 & 2
\end{array}\right]
$$

Now use Gauss-Jordan elimination to row reduce the augmented matrix:

$$
\left.\begin{array}{rl}
\xrightarrow{\longrightarrow} & {\left[\begin{array}{rrrr}
1 & 2 & -2 & -8 \\
3 & 1 & 9 & 1 \\
1 & 0 & 4 & 2
\end{array}\right]} \\
m_{2}(-1 / 5) \\
\xrightarrow[t_{13}(-1)]{t_{12}(-3)}
\end{array}\left[\begin{array}{rrrr}
1 & 2 & -2 & -8 \\
0 & 1 & -3 & -5 \\
0 & -2 & 6 & 10
\end{array}\right] \xrightarrow{1} \begin{array}{rrrr}
2 & -2 & -8 \\
0 & -5 & 15 & 25 \\
0 & -2 & 6 & 10
\end{array}\right]
$$

The last matrix is in reduced row echelon form. It is the augmented matrix of the linear system

$$
\begin{aligned}
x_{1}+\begin{aligned}
4 x_{3} & =2 \\
x_{2}-3 x_{3} & =-5
\end{aligned}, ~
\end{aligned}
$$

where the last equations $0=0$ is left off. The solutions of this last system are obtained by identifying the bound variables as x_{1} and x_{2}, so x_{3} is a free variable. Solving for x_{1} and x_{2} in terms of x_{3} gives:

$$
\begin{aligned}
& x_{1}=2-4 x_{3} \\
& x_{2}=-5+3 x_{3} .
\end{aligned}
$$

Letting the free variable be assigned arbitrarily: $x_{3}=\alpha$, gives all the solutions as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2-4 \alpha \\
-5+3 \alpha \\
\alpha
\end{array}\right]=\left[\begin{array}{r}
2 \\
-5 \\
0
\end{array}\right]+\left[\begin{array}{r}
-4 \\
3 \\
1
\end{array}\right] \alpha
$$

where α is an arbitrary real number.
2. [16 Points] Let $A=\left[\begin{array}{rrr}x-2 & 4 & 3 \\ 1 & x+1 & -2 \\ 0 & 0 & x-4\end{array}\right]$.
(a) Compute $\operatorname{det} A$.

- Solution. Use cofactor expansion along the third row:

$$
\begin{aligned}
\operatorname{det} A & =(x-4) \operatorname{det}\left[\begin{array}{rr}
x-2 & 4 \\
1 & x+1
\end{array}\right]=(x-4)((x-2)(x+1)-4) \\
& =(x-4)\left(x^{2}-x-6\right)=(x-4)(x-3)(x+2)
\end{aligned}
$$

(b) For which values of x is the matrix not invertible.

- Solution. A is not invertible if and only if $\operatorname{det} A=0$. This happens if and only if $x=4,3$, or -2 .

3. [16 Points] Solve the initial value problem: $y^{\prime}-4 y=6 e^{4 t}+3, \quad y(0)=-2$.

- Solution. This equation is linear with coefficient function $p(t)=-4$ so that an integrating factor is given by $\mu(t)=e^{\int-4 d t}=e^{-4 t}$. Multiplication of the differential equation by the integrating factor gives

$$
e^{-4 t} y^{\prime}-4 e^{-4 t} y=6+3 e^{-4 t}
$$

and the left hand side is recognized (by the choice of $\mu(t)$) as a perfect derivative:

$$
\frac{d}{d t}\left(e^{-4 t} y\right)=6+3 e^{-4 t}
$$

Integration then gives

$$
e^{-4 t} y=6 t-\frac{3}{4} e^{-4 t}+C
$$

where C is an integration constant. Multiplying through by $e^{4 t}$ gives

$$
y=6 t e^{4 t}-\frac{3}{4}+C e^{4 t}
$$

The initial condition gives $-2=y(0)=-\frac{3}{4}+C$ so $C=-\frac{5}{4}$ and thus

$$
y=6 t e^{4 t}-\frac{3}{4}-\frac{5}{4} e^{4 t} .
$$

4. [16 Points] Solve the initial value problem: $t y^{\prime}-3 y=t^{5} \quad y(1)=3$.

- Solution. This equation is linear. Putting it in standard form gives

$$
y^{\prime}-\frac{3}{t} y=t^{4}
$$

Thus, the coefficient function is $p(t)=-\frac{3}{t}$, so that an integrating factor is $\mu(t)=$ $e^{\int-\frac{3}{t} d t}=e^{-3 \ln t}=e^{\ln \left(t^{-3}\right)}=t^{-3}$. Multiplication of the differential equation (in standard form) by the integrating factor gives

$$
t^{-3} y^{\prime}-3 t^{-4} y=t
$$

and the left hand side is recognized (by the choice of $\mu(t)$) as a perfect derivative:

$$
\frac{d}{d t}\left(t^{-3} y\right)=t
$$

Integration then gives

$$
t^{-3} y=\frac{t^{2}}{2}+C
$$

where C is an integration constant. Multiplying through by t^{3} gives

$$
y=\frac{t^{5}}{2}+C t^{3} .
$$

The initial condition $y(1)=3$ implies $3=y(1)=\frac{1}{2}+C$ so that $C=5 / 2$. Hence

$$
y=\frac{t^{5}}{2}+\frac{5}{2} t^{3}
$$

5. [16 Points] Solve the initial value problem: $y^{\prime}=y^{2}(1+t), \quad y(0)=-2$.

- Solution. This equation is separable. There is one equilibrium solution: $y=0$. This does not satisfy the initial condition so it is not the required solution. If $y \neq 0$, separate variables to get $y^{-2} y^{\prime}=1+t$, which in differential form is

$$
y^{-2} d y=(1+t) d t
$$

and integration then gives $-y^{-1}=(1+t)^{2} / 2+C$. The initial condition $y(0)=-2$ gives $-(-2)^{-1}=1 / 2+C$ so $C=0$, and $-y^{-1}=(1+t)^{2} / 2$. Solving for y gives

$$
y=\frac{-2}{(1+t)^{2}} .
$$

6. [20 Points] A tank initially contains 300 gallons of a salt solution made by dissolving 30 pounds of salt in water. A solution containing 0.6 pounds of salt per gallon enters the tank at a rate of 5 gallons per minute. A drain is opened at the bottom of the tank through which the well stirred solution leaves the tank at the same rate of 5 gallons per minute. Let $y(t)$ denote the amount of salt (in pounds) which is in the tank at time t.
(a) What is $y(0)$? $y(0)=30$
(b) Write the differential equation that $y(t)$ must satisfy.

- Solution. The balance equation is

$$
y^{\prime}(t)=\text { rate in }- \text { rate out. }
$$

The rate in is $0.6 \mathrm{lb} / \mathrm{gal} \times 5 \mathrm{gal} / \mathrm{min}$, i.e., $3 \mathrm{lb} / \mathrm{min}$. The rate out is

$$
\left(\frac{y(t)}{V(t)}\right) \times 3 .
$$

Since mixture is entering and leaving at the same volume rate of $5 \mathrm{gal} / \mathrm{min}$, the volume of mixture in the tank is constant. Thus $V(t)=300$. Hence $y(t)$ satisfies the equation

$$
y^{\prime}=3-\frac{5}{300} y
$$

so that the initial value problem satisfied by $y(t)$ is

$$
y^{\prime}+\frac{1}{60} y=3, \quad y(0)=30
$$

(c) Solve the differential equation to find $y(t)$.

- Solution. This is a linear differential equation with integrating factor $\mu(t)=$ $e^{t / 60}$, so multiplication of the differential equation by $\mu(t)$ gives an equation

$$
\frac{d}{d t}\left(e^{t / 60} y\right)=3 e^{t / 60}
$$

Integration of this equation gives

$$
e^{t / 60} y=180 e^{t / 60}+C,
$$

where C is an integration constant. Dividing by $e^{t / 60}$ gives

$$
y=180+C e^{-t / 60},
$$

and the initial condition $y(0)=30$ gives a value of $C=-150$. Hence, the amount of salt at time t is

$$
y(t)=180-150 e^{-t / 60}
$$

(d) How much salt is in the tank after $1 / 2$ hour?

- Solution. This is obtained by taking $t=30$ (minutes) in the previous equation:

$$
y(30)=180-150 e^{-30 / 60} \approx 89.02 \mathrm{lb}
$$

