Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without supporting work. Put your name on each page of your paper.

1. [8 Points] Determine if each of the following first order differential equations is separable (Yes or No), and/or linear (Yes or No). Do not solve the equations.

| Equation | Separable | Linear |
| :---: | :---: | :---: |
| $y^{\prime}+y=t^{2}$ | No | Yes |
| $y^{\prime}+y^{2}=t^{2}$ | No | No |
| $y^{\prime}+y^{2} t=0$ | Yes | No |
| $y^{\prime}+t^{2} y=t^{2}$ | Yes | Yes |

2. [12 Points] Let $A=\left[\begin{array}{rrr}2 & 1 & -1 \\ 3 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & -1 \\ 2 & 1\end{array}\right]$. Compute each of the following matrices, if it exists.
(a) $A B$
(b) $B A$
(c) $A^{2}$
(d) $B^{2}$

- Solution. (a) $A B$ does not exist.
(b) $B A=\left[\begin{array}{rrr}-1 & 1 & -2 \\ 7 & 2 & -1\end{array}\right]$.
(c) $A^{2}$ does not exist.
(d) $B^{2}=\left[\begin{array}{rr}-1 & -2 \\ 4 & -1\end{array}\right]$.

3. [16 Points] Find all solutions to the linear system

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}+3 x_{4}=1 \\
x_{1}+2 x_{2}+2 x_{3}+5 x_{4}=0 \\
-x_{1}-2 x_{2}-3 x_{3}-7 x_{4}=1
\end{array}
$$

- Solution. The augmented matrix of the system is

$$
\left[\begin{array}{rrrrr}
1 & 2 & 1 & 3 & 1 \\
1 & 2 & 2 & 5 & 0 \\
-1 & -2 & -3 & -7 & 1
\end{array}\right] .
$$

Row reduce this matrix:

$$
\begin{gathered}
\left.\left[\begin{array}{rrrrr}
1 & 2 & 1 & 3 & 1 \\
1 & 2 & 2 & 5 & 0 \\
-1 & -2 & -3 & -7 & 1
\end{array}\right] \stackrel{\substack{t_{12}(-1) \\
t_{13}(1)}}{\left[\begin{array}{rrrrrr}
1 & 2 & 1 & 3 & 1 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & -2 & -4 & 2
\end{array}\right]} \begin{array}{|rrrrr}
1 & 2 & 1 & 3 & 1 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered} \underset{\substack{t_{21}(-1) \\
\hline}}{\left[\begin{array}{llllr}
1 & 2 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
$$

This last matrix is the augmented matrix of the system

$$
\begin{aligned}
x_{1}+2 x_{2} & \left.\begin{array}{rl}
+x_{4} & =2 \\
x_{3}+2 x_{4} & =-1 \\
& -0
\end{array}\right)=0
\end{aligned}
$$

This system has leading variables $x_{1}$ and $x_{3}$ and free variables $x_{2}$ and $x_{4}$. Solving for $x_{1}$ and $x_{3}$ in terms of $x_{2}$ and $x_{4}$, and letting $x_{2}=s, x_{4}=t$, where $s$ and $t$ are arbitrary, gives the solutions

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2-2 s-t \\
s \\
-1-2 t \\
t
\end{array}\right]
$$

4. [16 Points] Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$.
(a) Compute $\operatorname{det} A$.

- Solution. Using cofactor expansion along the first row:

$$
\operatorname{det} A=1 \cdot\left|\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right|-0 \cdot\left|\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right|+1 \cdot\left|\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right|=4-2=2
$$

(b) Compute the inverse of $A$.

## - Solution.

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & I
\end{array}\right] } & =\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
1 & 0 & 2 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 2 & 0 & -1 \\
0 & 2 & 0 & 1 & 1 & -1 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 2 & 0 & -1 \\
0 & 1 & 0 & 1 / 2 & 1 / 2 & -1 / 2 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thus,

$$
A^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 & 0 & 1
\end{array}\right]
$$

5. [16 Points] Solve the initial value problem: $y^{\prime}+5 y=30 e^{-5 t}+30 e^{5 t}, \quad y(0)=-5$.

- Solution. This equation is linear with coefficient function $p(t)=5$ so that an integrating factor is given by $\mu(t)=e^{\int 5 d t}=e^{5 t}$. Multiplication of the differential equation by the integrating factor gives

$$
e^{5 t} y^{\prime}+5 e^{5 t} y=30+30 e^{10 t}
$$

and the left hand side is recognized (by the choice of $\mu(t)$ ) as a perfect derivative:

$$
\frac{d}{d t}\left(e^{5 t} y\right)=30+30 e^{10 t}
$$

Integration then gives

$$
e^{5 t} y=30 t+3 e^{10 t}+C,
$$

where $C$ is an integration constant. Multiplying through by $e^{-5 t}$ gives

$$
y=30 t e^{-5 t}+3 e^{5 t}+C e^{-5 t}
$$

The initial condition gives $-5=y(0)=3+C$ so $C=-8$ and thus

$$
y(t)=30 t e^{-5 t}+3 e^{5 t}-8 e^{-5 t} .
$$

6. [16 Points] Solve the initial value problem: $y^{\prime}=y^{2}(t+2), \quad y(0)=1$.

Solution. This equation is separable. There is one equilibrium solution: $y=0$. This does not satisfy the initial condition so it is not the required solution. If $y \neq 0$, separate variables to get $y^{-2} y^{\prime}=t+2$, which in differential form is

$$
y^{-2} d y=(t+2), d t
$$

and integration then gives

$$
-y^{-1}=\int(t+2) d t=\frac{1}{2}(t+2)^{2}+C
$$

so that

$$
y=\frac{-1}{\frac{1}{2}(t+2)^{2}+C} .
$$

The initial condition $y(0)=1$ gives $1=-1 /(2+C)$ so $C=-3$, and

$$
y=\frac{-1}{\frac{1}{2}(t+2)^{2}-3}=\frac{-2}{(t+2)^{2}-6}
$$

7. [16 Points] Solve the initial value problem: $y^{\prime}+\frac{2}{t} y=t^{4}, \quad y(1)=\frac{22}{7}$.

- Solution. This equation is linear and already in standard form. Thus, the coefficient function is $p(t)=\frac{2}{t}$, so that an integrating factor is $\mu(t)=e^{\int \frac{2}{t} d t}=e^{2 \ln |t|}=$ $e^{\ln \left(|t|^{2}\right)}=|t|^{2}=t^{2}$. Multiplication of the differential equation by the integrating factor gives

$$
t^{2} y^{\prime}+2 t y=t^{6}
$$

and the left hand side is recognized (by the choice of $\mu(t)$ ) as a perfect derivative:

$$
\frac{d}{d t}\left(t^{2} y\right)=t^{6}
$$

Integration then gives

$$
t^{2} y=\frac{t^{7}}{7}+C
$$

where $C$ is an integration constant. Multiplying through by $t^{-2}$ gives

$$
y=\frac{t^{5}}{7}+C t^{-2}
$$

The initial condition $y(1)=\frac{22}{7}$ implies $\frac{22}{7}=y(1)=\frac{1}{7}+C$ so that $C=3$. Hence

$$
y=\frac{t^{5}}{7}+3 t^{-1}
$$

