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Periodic. Fundamental period is 27/2 = 7.

Since cos 2t is periodic with fundamental period 27 /2 = 7, it follows that
all positive multiples k7 is also a period. Similarly, sin 3¢ is periodic with
fundamental period 27/3 so that all positive multiples 2mm/3 are also
periods. If p is any number that can be written both as k7 and 2ma/3 for
appropriate k and m, then p is a period for the sum: cos 2(t+p)+sin 3(t+
p) = cos(2t + 2p) +sin(3t + 3(2mn /3)) = cos(2t + 2km) + sin(3t + 2mm) =
cos 2t + sin 3t. Therefore, the function is periodic with period p. The
smallest p that is both k7 and 2mn/3 is p = 27 (kK = 2, m = 3). Thus
the fundamental period is 27

sin®t = (1 — cos2t)/2 so sin?t is periodic with fundamental period
2r/2 =

Periodic. The periods of sint are 2k, the periods of sin 2t are mm, and
the periods of sin 3t are 2n7/3 for positive integers k, m, n. The smallest
p that is common to all of these is p = 27, so the fundamental period is
2.

f(=t) = (=t)|—t| = —t|t| = —f(¢) for all t. Thus, f(t) is odd.

This is the product of two even functions (cost for both). Thus it is even
by Proposition 5 (1).

f(=t) = f(t) = (=t)? +sin(—t) = t? +sint = 2 —sint =
t? +sint = 2sint =0 = t = kr. Thus f(t) is not even. Similarly,
f(t) is not odd.

f(=t) =In|cos(—t)| = In|cost| = f(t). Thus, f(¢) is even.

Use the identity cos Asin B = 3(sin(A + B) + sin(B — A)) to get
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L
1 _
/_L cos %tsm mTtdt 5/ (sin @t—i—m ( Ln)wt) dt
1 -L (m+ ) -L (m—n)r \ |
= = t t =0.
2 ((m +n)w o8 L + (m—n)w o L L

SECTION 10.2

1. The period is 10 so 2L = 10 and L = 5. Then

/f /Odt+1/53dt1 15=3
5 /o 5 T

Forn>1,
0 5
1
an = — /f cos—tdt /f(t)cosﬂtdt—k—/ f(t)cosﬂtdt
s 5 5/ 5

1[5 nmw
= 0 —tdt 3cos —tdt
[5()cos5 +5/0 cos —

5
5
1[15
= - —smﬂt =0,
5 |nmw 5 1o
and
1 5 5
b= f(t)sinn—tdt /f s1n—tdt+ /f(t)sin%tdt
-5
I 1
Zg/_g)(O)sinn%tdt—i—g/o 3sin%tdt
[ 1s  nm P
5 s,
3
== —1)=(1-(-1)"
—(cosnm —1) = —(1 - (=1)")

0 if n is even
N % if n is odd.

Therefore, the Fourier series is



6 ,7rt+1,37rt+1,
sm5 3s1n 5 5s1n

3 6 1 . nm
= 5 + ; Z ﬁ S1n ?t.
n=odd

. The period is 27 so L = 7. Then

T 0
I f(t)dt:l/

s

1 Solutions

5) 1

T e
—t+ osin—=©t+---

5 7 5)

1 ™
4dt+—/ —1ldt=4—-1=3.
™ Jo

Forn >1,
1 /’T
an = —
T™J-n
1 /° 17
=— 4cosntdt+ — [ (—1)cosntdt
T —r v 0
14 . 1° 1[-1. 7
= — |—sinnt + — |—sinnt| =0,
T|n . Tln 0
and
1 T
by — _/
T ) ) .
1 1" )
=— dsinntdt +— [ (—1)sinntdt
™ —r ™ 0
= — [|——cosnt + — |——cosnt
T IR n 0
(1 — cos(—nm)) + —(cos(nr) — 1)
= —(1 — cos(—nm —(cos(nm) —
nw .
5 5
=——(1- =——0-=(=1D").
= (1 cosnm) =~ (1~ (~1)")
Therefore,

0
o'

and the Fourier series is

3 10 1
25—— Z — sinnt.
T

n
n=odd

if n is even,
if n is odd,

10 / . 1 . 1 . 1 .
sinnt + —sinnt + —sinnt + —sinnt + - - -
s 3 5 7

).

1[0 1 (7
f(t)cosntdt = = f(t)cosntdt + — / f(t) cosntdt
v - v 0

0 ™
f(t)sinntdt = 1 f(t)sinntdt + 1 / f(t)sinntdt
T Jo
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5. The period is 27 so L = 7. The function f(¢) is odd, so the cosine terms
an are all 0. Now compute the coefficients b,,:

bn

1 us
— f(t)sinntdt

™

z/ tsinnt dt (letx:nt sot= lx and dt = ld:zc)
0 n

T n
2 nm 1 2 nm
— —:vsm:v—dx—T rsinx dr
s 0 n n n 0
—— [sinx — xcosz]._"
n2m z=0
2 2

———=(nmcosnr) = ——(=1)".

n2mw n

Therefore, the Fourier series is

1 1 1
ft) ~2 <sint— §sin2t—|— gsin3t— Zsin4t—|—-~->

n+1

o0
Z sin nt.

7. The period is 4 so L = 2. The function is even, so the sine terms b,, = 0.
For the cosine terms a,,:

2

1 2 1 2 2 tS

and for n > 1, (integration by parts is used multiple times)

an:

cos —t dt = ) cos —t dt = t2 cos Et dt
f 2

2 24 nmw

— —s1n—tdt ——/ tsm—tdt

0 o nm

2 2 2 nmw

+ — cos —t dt
0 nm 0 2
16 16 . nw

n2m2 n3m3 2

16y

n2m2

2 2 nmw
t° - —sin —t
nmw 2

nm

Therefore, the Fourier series is



8 1 Solutions

9. The period is 7 so L = 7/2 and nw/L = 2n. The function is even, so the
sine terms b,, = 0. For the cosine terms a,,:

™

2 (7 2 (7 2 4
ap = —/ fit)ydt = —/ sintdt = ——cost| = —,
0 ™ Jo ™ m

0

and for n > 1,

2 (7 2 (7
an, = —/ f(t) cos2ntdt = —/ sint cos 2nt dt
T Jo ™ Jo

2 1
_2 / = (sin(2n + 1)t — sin(2n — 1)t) dt

™ 0 2
_ l —1 CO! (2 —+ 1)t—|— 1 CO‘(2 1)t i
Con | 2n+1 s\en on — 1 OO 0

[y

- - {271__‘1_ 1 (cos(2n+1)m — 1) + 2n1— 7 (cos(2n — 1)m — 1)}

20 1 1] -4
Cor |2n—1 2n4+1] (4n2-1r’

Therefore, the Fourier series is

11. The period is 2 so L = 1. Since the function f(t) is even, the sine
coefficients b, = 0. Now compute the coefficients a,: For n = 0, using
the fact that f(¢) is even,

ao_/llf(t)dt_Q/Olf(t)dt

:2/0 (1—t)dt:2[t—§]::1.

For n > 1, using the fact that f(¢) is even,
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1 1
an = / f(t) cosnmtdt = 2/ f(t) cosnmt dt
-1 0

1
= 2/ (1 —t)cosnmtdt (integration by parts with u =1 — ¢, dv = cosnnt dt)
0

1—t ! !
=2 [ sin mrt] + — sinnmt dt
nmw o Ny
9 1
= —— t
2 cos N .
2 2 "
Therefore,

0 if n is even,
Qn = . .
-2 ifnisodd

n2m

and the Fourier series is

£(1) 1 4 (cosmt n cos 3t n cos bt n cos Trt n
2 72 12 32 52 72
1 4 S cosnmt
=5+3 >

n=odd

13. The period is 27 so L = m. The function f(¢) is an odd function, so the
cosine terms a,, = 0. Now compute the coefficients b,,: Since f(t) is odd,
f(t)sinnt is even so, (using integration by parts multiple times)

1 2 [T
b= [ s@sinnede=2 [* s
TJ_x ™ Jo
2 [T .
== t(m —t)sinnt dt
™ Jo
2 —t(m—t o2 "
_ =z Lcosnt + = (m — 2t) cosnt dt
T n 0 nm 0
2(m — 2t R
— ysmnt + == sinnt dt
nem 0 n=m Jo
4 B 4
= ———cosnt :—T(cosnﬂ'—l)
n3m 0 n3m

4 0 if n is even
ngﬂ'(( ) ) {i if n is odd.

n3m
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Therefore the Fourier series is

s~y B

o
n=odd

15. The function is odd of period 27 so the cosine terms a, = 0. Let n > 1.
Then,

1 (7 2 [T
by, = — f(t)sinntdt = —/ f(t) sinnt dt
™ Jo

T™J-xn

2 ("t
= ;/0 s1n§smntdt
. /ﬂ(cos(1 —n)t — cos(1 +n)t)dt
T Jo 2 2
1 [sin(3 —n)t sin(3+n)t]"
T %—n - %—i—n L
1 [sin(3 —n)m  sin( )
:;_ %—n a 1+n }
1 [sin§cosnm  sin g cosnw
:; %—n ; 2+n ]
(-)n [ 1 1
- ™ {%—n_%—i-n}
U [ - (o)
v 1 —n?
2n(—1)"+t
oa(n?2 -1

17. The period is 2 so L = 1.
1
ag = / etdt=e' —e ' =2sinh 1.
-1

For n > 1, the following integration formulas (with a = 1, b = nm) will
be useful.
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1
/e cos(bt) d ey ———e"[acos(bt) + bsin(bt)] + C
1
/ sin(bt) d ey ———e"[asin(bt) — beos(bt)] + C
Then,
1
a, = / e cosnt dt
—1
1 1
— t 3
= ———¢'[cosnnt + n7sinnwt]
1+n?m -1
1
=T [e! cosnm — et cos(—nm)]
n2mw
(el —e (=)™ 2(—1)"sinh(1)
N 1+ n2n2  14n2r2 7
and,

1
bn, = / et sinnmt dt

—1
1

= ———¢'[sinnwt — nwcos nt]

14+ n2n2 1
1
= W[el(—nﬂ' cosnm) — et (—nm cos(—n))]
n2mw
(el —e Y (—nm) (=)™ 2(—1)"(—nn)sinh(1)
N 1+ n2n2 N 1+ n2n2 '

Therefore, the Fourier series is

—1)"(cosnmt — nw sinnt)
1+ n?n? '

f(t) ~ sinh(1) + 2sinh(1) i (

n=1
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SECTION 10.3

1. (a) y
e——o0 3 &—o e——o0
‘ ‘ ‘ ‘ ‘ — 1
o 1 2 4 6 8
o—? -1 &—o &—o0

(b) All t except for ¢t = 2n for n an integer.
(¢) For t =2n, f(t) = 3 for n even and f(t) = —1 for n odd. Converges
to (3+(—1))/2=1 for all t = 2n.

3. (a) Y

-2 -1

(b) All ¢ except for t = n for n an even integer.
(c) For t an even integer, f(t) = 0. Fourier series converges to 1.

5. (a)

-6 -4 =2 2 4 6
(b) All ¢ since f(t) is continuous for all .
(¢) No points of discontinuity.

7. (a)

6 -5 -4 -3 —2 -1 | 1 2 3 4 5 6
(b) All t except for ¢t = 4n for n an integer.
(c) For t a multiple of 4, f(t) = 0. Fourier series converges to 1.
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11.

13.

(b) All ¢ since f(t) is continuous.
(¢) No points of discontinuity.

The Fourier series for the 2L-periodic function f(t) =t for —L <t < L
is

This function is continuous for —L < t < L so the Fourier series converges
to f(t) for —L <t < L. Letting L = 7 gives an equality

1 1 1
t=2 (sint— §sin2t+ gsin3t— Zsin4t+~-~) , for —m <t < m.
Dividing by 2 gives the required identity. Substituting ¢t = 7/2 gives the
summation.

The 2-periodic function defined by f(¢) = t2 for —1 <t < 1 has period
2 so L = 1. Compute the Fourier series of f(t). The function is even, so
the sine terms b,, = 0. For the cosine terms a,:

1 1 1 3
_ _ _ 2 ot
ao_/_lf(t)dt_Q/o f(t)dt_Q/Otdt_23

and for n > 1, (integration by parts is used multiple times)

2
3’

1
0

1 1 1
ap, = / f(t)cosnmtdt = 2/ f(t) cosnmtdt = 2/ t? cosnt dt
—1 0

0

1 1 1
1 2t 4

=2¢>. —sinnnt —2/ —sinmrtdt:——/ tsinnwt dt
n 0 0 nm nm 0

4 | -t Yoot
= —— | —cosnnt| + — cosnmt dt
nm | nmw o N g
1
4
= ——cosnmT — —— sinnnt
n2m2 n3m3 0
4




14

15.

1 Solutions

Therefore, the Fourier series is

n
cosnrt.

oo|>—'

4 oo
N
Since the function f(t) is continuous for all ¢, the Fourier series converges
to f(t) for all ¢t. In particular,

4 (o9}
N

n

cosnwt = t2, for —1 <t <1.

C»JI>—‘

f(¢) is 27 periodic and even. Thus the sine terms b, = 0. For the cosine

terms. L o 5
aoz—/ t4dt:—/ thdt = Zrt.
T ) T Jo )

For n > 1: The following integration formula, obtained by multiple inte-
grations by parts, will be useful:

1 1 1
/t4 cosatdt = =t*sinat — —4t3 cosat — — 12t2 sin at
a a? a’d
1 .
— —42475 cosat + —524 sin at.
a a

Then, since t* is even, and letting @ = n in the integration formula,

1 [T 2 [T
an:—/ t4cosntdt:—/ t* cosnt dt
T —r iy 0
2 (1, . 4 4 12 , . 24 24 . T
= — |—t"sinnt + —t° cosnt — —t“sinnt — —tcosnt + — sinnt
T in n2 n3 nt nd o
214 4 24
= — | 57 COSNT — — T COSNT
T|n n
8 n 48 "

Thus, the Fourier series is

48
- H(—l)"} cos nt.

Since f(t) is continuous for all ¢, the Fourier series of f(t) converges to
f(¢) for all t. In particular, there is an identity



1 Solutions

valid for all ¢. Setting t = 7 gives

1 o0
4:g z::

Mloo
Mg
3%

n=1
Thus,
| 4, -
18— =—gmi4srty —
n=1 n=1
4 4 o T
=7 + 87 3 from problem 13
4 4 8
A2 _ 2\ A
- (3 5) " (15)'
Hence,

1 = 8 L =48
0= g7r4+zﬁ7r2(—1) - (-1
n=1 n=1
Thus,
— (=" 7’ s ()"
48;1 = 8T nz::l -
~ ™ 2. ™ from problem 13
=5 ™ 2 rom pr m
rt  8rt 4(1 2) T 4
== =5 = - — =) =——7
5 12 5 3 15
Therefore,

i (_1)n+1 - 77'('4 B E
nt  15-48 720"

SECTION 10.4

1. Cosine series:

15
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and for n > 1
2 [F t
a":f/o f(t)cosn%dt
2 L

L
nmt 2 nmt

== —dt = —s¢in—| =0.

L/o cos i7 stm Ll

Thus, the Fourier cosine series is f(¢) ~ 1 and this series converges to the

constant function 1.
Sine series: For n >'1

2 (L t
bo=— [ f(t)sin == gt
L J,
2 /L . nmt i 2 nat |
= — sin — dt = —— cos —
L J L nmw L |,
0 if n is even
=——(cosnmr—1)=<¢, .
nm — if nis odd.

This converges to the odd extension of f(t), which is the odd square wave
function (see Figure 10.5). The graph is

- e ¢ e @& 0 |
—3L —2L —L L 2L 3L
-1
3. Cosine series: For n = 0,
9 [2
%:—/f@ﬁ
2 Jo
2 2
=2.

0

t2
:/tﬁ:—
0 2

For n > 1, taking advantage of the integration by parts formula
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/xcosxda: =xsinx + cosx + C,

2 2
Qp, = 5/0 f(t) cos %tdt
2

2 2d
:/ tcosnltdt (1etw:Ttsot:—manddt:—x)
0 2 2 nmw nmw
nw 2.17 2d.17 4 . T=nTm
= —cosT — = —— [rsinx + cos x|,
0 nm nmw n2mw
2 n
= W[COSTLTF — 1] = W[(_l) — 1]
Therefore,

0 if n is even,
an = . .
pop e if n is odd

and the Fourier cosine series is

8 (cosgt  cos %’rt cos %’rt cos %’rt
f(t)Nl_F( 12 32 + 52 + 72 T
8 cos 5t
=l-= Z n2

n=odd

This converges to the even extension of f(¢), which is an even triangular
wave with graph

Sine series: For n > 1, taking advantage of the integration by parts
formula

/xsin:vdm = —zcosx +sinz + C,
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2 2
5/0 f(t)sin %Ttdt

2
:/tgdfnﬁ Oaz_ﬁﬂam_z— nd dt = 2m>
o 2 2

o
3
Il

nw nw
nm
2x . 2dx 4 r—nm
= —sinz — = —— [~wcosx +sinz],
0 nm nw n?w
4
=——cosnt =——(—-1)"
nm nm

Therefore, the Fourier sine series is

F~ 2 2 3 4

4 sin%t sm—t s1n—t sin%”t

Z 4180 L sin "”t

This converges to the odd extension of f(¢), which is a sawtooth wave
with graph

and for n > 1,

/2
/ f(t)cosntdt = / cosnt dt

2 nmw
= —sin —.
0 nmw 2

—sin nt
nmw

Thus, the Fourier cosine series is

nm

2 = sin 4 1 2
;g 2cosnt_§+;212( c082k+1)

l\3|’—‘
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This converges to the even extension of f(t), which has the graph

[SIE]
3
w L
3
[\
3

—or *7371' T =z

Sine series: For n > 1,

/2
/ f(t)sinntdt = / sinnt dt

T2 nm
= —cosnt = —(cos — —1).
nmw 0 nm 2
Thus, the Fourier sine series is
2% 2
- Z — cos— — 1) sinnt.
T nmw
n=1

This converges to the odd extension of f(t), which has the graph

|
3
B
3 1
w
3
O
3

91 —3n -7

7. Cosine series: For n =0,

2 [t 42 2 1
I/o f(t)dt:2/ (t—tQ)dt_Q[g_gh_g.

For n > 1, taking advantage of the formula (obtained from repeated
integration by parts):

1 1
/p(t) cosatdt = —p(t)sinat — = /p'(t) sin at dt
a a

1 1 1
= —p(t)sinat + —p'(t) cosat — —p '(t)sinat — - - -
a a?

+F+—-——++—-—-- )(signs alternate in pairs),
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1 1
=2 [ f(t)cosnmtdt = 2/ (t —t?) cosnrt dt
0

0
1
1 1 1
=2 |—(t—1t?) 5 (1 —2t) cosnmt — (—2) sinnwt
mr 272 n3m3 0
=2 { - n27r2] =5 (cosnm + 1)

0 if n is odd
2.2

if n is even

Therefore, the Fourier cosine series is

1 4 cosnmt
1)~ 6 72 Z n2

n=even

This converges to the even extension of f(t), which has the graph

Y

-3 -2 -1 ‘ 1 2 3

Sine series: For n > 1, taking advantage of the formula (obtained from
repeated integration by parts):

1 1
/p(t) sinatdt = —=p(t) cosat + ~ /p’(t) cosat dt
a a

1 Lo, . Ly,
= —ap(t) cosat + Fp (t)sinat + Ep (t) cosat —

(—++ — — ++ - )(signs alternate in pairs after first term),

1

1 1
t — t%) cos nt t5s (1 — 2t) sinnwt + 5 (=2) cosnt
33
0

1
/ )sinnwt dt = 2/ (t — %) sinnwt dt
0

=— 3(cosmr—l)
ndmw

0 if n is even
% if n is odd

Therefore, the Fourier sine series is
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f(t)rv% Z sinmrt'

n3
n=odd

This converges to the odd extension of f(t), which has the graph

9. Cosine series: The even extension of the function f(t) = cost on 0 <
t < 7 is just the cosine function on the whole real line. Thus, f(t) it
its own Fourier cosine series f(t) ~ cost, which converges to the cosine
function.

Sine series: For n > 1,

bn

T

2 (7 2 [T

—/ f(t)sinntdt:—/ costsinnt dt
m™Jo ™ Jo

— 1

2
== {Q—I(Sintsin nt + ncost cos nt)}
T |n?—
0
—2n
= ﬁ(coswcosmr -1)
m(n? —
B ﬁ if n is even
o if n is odd

Therefore, the Fourier sine series is

2 4 n .
f(t) ~ ; + ; ngcn m sin nt.

This converges to the odd extension of f(t), which has the graph

11. Cosine series: For n = 0,
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Forn >1,

Ap =

L L
nmw 2 2 nmw
t —tdt = — 1——t —tdt
/0 f()COSL L/O ( L)COSL

i(1—21€)sinn—7rt—i—L—2(—E)cosHtL
nmw L L n2m2 L L |,
# if n is odd

1 (cosnm — 1)
_ T—1) =
n2m2 0 if n is even

Therefore, the Fourier cosine series is
—4 cos 7=t
T n

n=odd

This converges to the even extension of f(t), which has the graph

Y
—3) 2L 2L \3L

Sine series: For n > 1,

2 L nmw 2 L 2 nmw
b, = — t)sin —tdt = — 1— —t)sin —tdt
L/o f()smL L/o ( L)smL

2 —L(1 2t)cosmrt—|— L2 ( 2)8, TLﬂ't
= — _— _—— _— _— _—— 111 —
L |nm L L n2m? L L |,
2 -2 2
= — - =—((-1)"+1
nmw cosnm nmw mr(( )"+
B n4—7r if n is even
)0 ifnisodd

Therefore, the Fourier sine series is

4 sin 2% ¢
t) ~ = L
fO~— > —

n=even

This converges to the odd extension of f(t), which has the graph
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—3L \2L \-L L L \3L

SECTION 10.5

1. The procedure is to write each of these functions as a linear combination
of f1(¢) and f2(¢) (or other basic functions whose Fourier series are already
computed) and then use Theorem 1.

(a) f3(t) =1— f1(t). Thus,
1 smnt
folt) =1~ ) ~ 5~ = P

(b) From Example 5 of Section 10.2, the Fourier series of the 27-periodic
sawtooth wave function f(t) =t for —w <t <, is

e (_1)n+1 )
t) ~ 22 — sin nt.
n=1

Since, f4(t) = f(t) = fa(t),

= (=)t T 2 cosnt  ~— 1SNt
t)NQZTsmm‘— 1 - — —i—Z(—l) HT
n=1 n=odd n=1
_ 7T+2 Z cosmﬁ_i_i( 1)nJrlsinm‘
- 4 g n=odd n? n=1 no

(c) fs5(t) = f3(t) + fa(t). Thus,

fslt 1 Z sin nt m cos nt i( et sinnt
° 2 n
n=odd n=odd n=1
T 1 2 cosnt —2 4 wsinnt sin nt
==+ - —— + —
TR i) D e Dt D
n—=odd n—=odd n=even

(d) fe(t) = 2f3(t). Thus,

)
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1 2 sinnt 4 sin nt
t)~2|=—— =1—-—
fﬁ() (2 ™ Z n ) ™ Z n

24

n=odd n=odd

(e) fr(t) = 2f3(t) +3f1(t) = 2(1 — f1(t)) + 3f1(t) = 2+ f1(t). Thus,

2 sinnt
+ — .
X

n=odd

l\DICﬂ

f1t) =2+ fi(t) ~

(f) fs(t) =1+ 2f2(t). Thus,

o0

cos nt Z K y18innt nt

RO~ -2 Y Y

n=odd =

fo(t) = afs(t) + bfa(t) + cfi(t) + df2(t)
=a(l = f1(t)) +b(t — f2(t)) + cf(t) + df2(?)
=a+ bt + (C — a)fl(t) + (d— b)fg(t)

Thus,

> 1 2 innt

folt Na+b( Z s1nnt>+c(§+; Z SH;:)
n=1 n=odd

T cosnt > sinnt

Z_Zz )tz

raf-2 3wt s ap)

n=odd n=1
c wd 2d cosnt sin nt
—a4 o402 cosm % +d
@t 2 + 4 T n2 Z (2b+d) n
n=odd n=even

2c sinnt

+ (— + 2b+ d) E .
™ n

n=odd

5 for —m <t < 7 has the cosine term ag = 0

3. The function g(t) = |¢| —
(z) dx can be computed

in its Fourier series, so the Fourier series of fjw g
by termwise integration of the Fourier series of ¢(t). For —7 <t <0,

t

/t g(z)dz—/t (|x|—%)dz:/_w(—x—g)d:c

—T —T

For 0 <t <m,
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Thus,

t
1
Lﬁg(x) dzr = 5152 sgnt — gt.

Theorem 7 applies to give

¢
Ay 4 1
/ g(x)dx ~ 70 - = — sinnt.
- n=odd

Since fi,, g(x) dz is an odd function, the cosine term Ay = 0. Solving for
f(t) gives

fi) = 2/ g(x)dx + mt.

—T

Thus, using the known Fourier series for ¢ given in Exercise 2, the Fourier
series of f(t) is given by

5. (a)

f(t) ~ =2 > L innt 42 Si(_UMJs t
~— — sinn ™ ~— _sinn
g n=odd 7’L3 n=1 n

-8 2 1
= Z (ﬁ—l—%)sinnt— Z Esinnt.

n=odd n=even

f(t) is continuous for —2 < ¢ < 0 and for 0 < ¢ < 2 since it is de-
fined by a polynomial on each of those open intervals. lim;_,o+ f(¢) =
lim, o+ & — % =0 and lim,_,o— f(t) = lim,_,o- —/2 = 0. Thus, f(t)
is continuous at 0. Since lim;_,o- f(t) = lim;_,o- % — % = % — % =1
and limy_o+ f(t) = limy_,_o+ f(¢) = limy_,_o+ —t/2 = 1, it follows
that f(t) is continuous at 2, and similarly at -2. Since f(¢) is 4-
periodic, it is thus continuous everywhere.

-3 if-2<t<0 0 if—2<t<0
Foy=4"2 "1 and f(t) =4 Thus,
t—5 ifO<t<2 1 if0o<t<2
both f’(t) and f”(t) are piecewise continuous,and hence f(t) is piece-
wise smooth. Therefore, the hypotheses of Theorem 3 are satisfied.
Using Theorem 3 we can differentiate the Fourier series of f(t) term

by term to get

Ft) ~ % Z <—(_1)n sin %H— %cos %t) .

n
n=1
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(¢) Since lim;_,o— f/(t) = limy_,o- t—% =1 —% = % and lim;_,o+ f/(t) =

lim;_, o+ f'(t) = limy_,_o+ —% = —%, it follows that f’(¢) is not
continuous at 2, and similarly at -2. Thus, the hypotheses of Theorem

3 are not satisfied.

SECTION 10.6

1. If g(t) is the 2-periodic square wave function defined on —1 < ¢ < 1 by
(1) = -1 if-1<t<0
TW=N1 ifo<t<a
series of f(t) is
1 2 sin nmt
t) = -+ — .
fe)=5+= >

2 n
n=odd

then f(t) = & + 1g(t). Thus, the Fourier

Let y(t) = % + >0 (A, cosnrt + By, sinnt) be a 2-periodic solution
of y” +4y = f(t) expressed as the sum of its Fourier series. Then y(t) will
satisfy the hypotheses of Theorem 3 of Section 10.5. Thus, differentiating
twice will give

o0
y'(t) = Z(—n27r2An cosnmt — nn?B,, sinnnt).
n=1
Substituting into the differential equation gives

y"(t) +4y(t) = 240 + Z(A" (4 — n?n?) cosnrt + B, (4 — n*1?) sin nrt)
n=1

1 2 sinnmt
SERE D
n=odd

Comparing corresponding coefficients of cosnznt and sinnnt gives the
equations

240 =

N~

Ap(4 —n?n%) =0 for all n > 1

0 if n is even
2 ifnis odd

nm

B, (4 —n?r?) =

Solving these equations gives Ag = 1/4, A, = 0 for all n, B,, =0 for n

even, and for n odd,
2

B,=———F—.
(4 —n?m2)nm
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Thus, the unique 2-periodic solution is the sum of the Fourier series ex-

pansion
1 2 1 .
y(t) = g =+ ; Z m&nnﬂ't.
n=odd
3. The characteristic polynomial ¢(s) = s?> + 1 has a root i = inw for

n = 1, so Theorem 2 does not apply. However, writing >~ , n=2cosnt =

cost+ .7 ,n % cosnt and solving the two equations y” +y = cost and
y" +y = f(t) separately, the original equation can be solved by linearity.
Start with y” +y = cost. This can be solved by undetermined coefficients.
Since q(s) = n? + 1 and £ {cost} = s®> + 1, a test function has the form
y(t) = Atcost+ Btsint. Then y'(t) = Acost— Atsint+ Bsint+ Bt cost,
and y'’(t) = —2Asint — Atcost + 2B cost — Btsint. Substituting into
y" 4+ y = cost gives

—2Asint + 2B cost = cost.

Equating coefficients of sint and cost gives A = 0 and B = 1/2. Thus,
a particular solution of y” + y = cost is y1(t) = %t sint. Now find a
particular solution of y” 4+ y = f(¢) by looking for a periodic solution
ya2(t) = Y07 5 (A, cosnt+ By, sinnt). Substitute into the differential equa-

tion to get
% - 2 2y o o 1
Yy + Yo = ;(An(l —n”)cosnt + By (1l —n)sinnt) = 7;2 - cos nt.
Comparing coefficients of cosnt and sinnt gives B, = 0 and A, =

@, so that a particular solution of y” + y = f(t) is
- 1
yg(t) = Z m cosnt.

n=2

By linearity, a particular solution of the original equation is
(t) Ly gint + Eoo ! t
= —tsin ————— cosnt,
v 2 n2(1 —n?)
n=2
and the general solution is

1 - 1
Yg(t) = yn(t)+yp(t) = C1cost+Cs sint—l——tsint—kz —5 5y cosnt.
2 = n

(1—mn?)

5. f(t) is the even extension of the function defined on the interval (0, 2) by
f@)=5if0<t<1and f(t) =0if 1 <t < 2. Thus the Fourier series is
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a cosine series with

and for n >1

2o
2 . nmt 2 . nw
= — SIn —— = — S1n —
nmw 2 |y mnm 2
Hence,
0 if n =2k for k> 1,
Ay, =
(-1 ifn=2k+1for k > 0.

Thus, the Fourier series of the forcing function is

2 i k cos (2k+1)7‘rt
7T — 2k + 1

Let y(t) = 42+ 507 | (A, cos "2t + B,, sin “I*) be a 4-periodic solution of
y" 4+ 10y = f(t) expressed as the sum of its Fourier series. Then y(¢) will
satisfy the hypotheses of Theorem 3 of Section 10.5. Thus, differentiating
twice will give

N)lO‘l

A, cos — — ——B,, sin —

1"
t) =
y'(®) 4 2 4 2

oo
Z{ n2m2 nrt  nin? . nrt
n=1

Substituting into the differential equation gives

2 2 t 2,2 t
y" (t) + 10y(t) _5A0+Z[ )cos%—l—Bn(lO—nZ)sin%
_5+2 oo( 1)kCOS (2k+21)7rt
2 L 2k +1

Comparing corresponding coefficients of cosnnt and sinnnt gives the
equations
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5
5A0:§
2.2
An(lo e )20 for alleven n > 1
(2k + 1)%n2 2(—1)F
Agj—1(10 — = for k> 1
21 ( — T2k+1)  EE
2.2
B,(10-"==) =0 foralln>1

Solving these equations gives Ag = 1/2, B, = 0 for all n, A, =0 for n
even, and for n = 2k + 1 odd,

2(—1)*
(10 — 27 (2k + 1)

Ap = Agp1 =

Thus, the unique 4-periodic solution is the sum of the Fourier series ex-

pansion
— )lC nwt
= -+ cos —_—.

7. The Fourier series of f(t) is the cosine series of f(¢). It was computed in
Exercise 2 of Section 10.4 as f(t) ~ 5 — 5> S0 Let y(t) =
% +>07 (A, cosnt + By, sinnt) be a 2-periodic solution of y” + 5y =
f(t) expressed as the sum of its Fourier series. Then y(t) will satisfy the
hypotheses of Theorem 3 of Section 10.5. Thus, differentiating twice will

give

oo
y'(t) = Z [-n®m” A, cosnmt — n’m* B, sinnrt] .
n=1

Substituting into the differential equation gives

5A >
') +yt) = Sl Z —n*r?) cosnat + B, (5 — n’n?) sinnrt]

- 1 4 cosnmt
=5 w2
n=odd

Comparing corresponding coefficients of cosnnt and sinnzt gives the
equations
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540 1

2 2
An (5 —n*r%) =0 for all even n > 1
An (5 —n?r?) = forodd n >1

m2n2

B, (5 —n*r%) =0 forallm >1

Solving these equations gives Ay = 1/5, B, = 0 for all n, A, =0 for n
even, and for n odd,

4

Ap=m
(5 — n2n?)r2n?

Thus, the unique 4-periodic solution is the sum of the Fourier series ex-
pansion

1 4
t) = — —_—_ t.
y(t) o anid (5 — n2n2)m2n? cosnm



