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11.1 EIGENVALUE PROBLEMS FOR y′′ + λy = 0

In Chapter 12 we’ll study partial differential equations that arise in problems of heat conduction, wave
propagation, and potential theory. The purpose of this chapter is to develop tools required to solve these

equations. In this section we consider the following problems, where λ is a real number and L > 0:

Problem 1: y′′ + λy = 0, y(0) = 0, y(L) = 0

Problem 2: y′′ + λy = 0, y′(0) = 0, y′(L) = 0

Problem 3: y′′ + λy = 0, y(0) = 0, y′(L) = 0

Problem 4: y′′ + λy = 0, y′(0) = 0, y(L) = 0

Problem 5: y′′ + λy = 0, y(−L) = y(L), y′(−L) = y′(L)

In each problem the conditions following the differential equation are called boundary conditions. Note
that the boundary conditions in Problem 5, unlike those in Problems 1-4, don’t require that y or y′ be zero

at the boundary points, but only that y have the same value at x = ±L , and that y′ have the same value

at x = ±L. We say that the boundary conditions in Problem 5 are periodic.

Obviously, y ≡ 0 (the trivial solution) is a solution of Problems 1-5 for any value of λ. For most values

of λ, there are no other solutions. The interesting question is this:
For what values of λ does the problem have nontrivial solutions, and what are they?

A value of λ for which the problem has a nontrivial solution is an eigenvalue of the problem, and

the nontrivial solutions are λ-eigenfunctions, or eigenfunctions associated with λ. Note that a nonzero

constant multiple of a λ-eigenfunction is again a λ-eigenfunction.

Problems 1-5 are called eigenvalue problems. Solving an eigenvalue problem means finding all its

eigenvalues and associated eigenfunctions. We’ll take it as given here that all the eigenvalues of Prob-
lems 1-5 are real numbers. This is proved in a more general setting in Section 13.2.

Theorem 11.1.1 Problems 1–5 have no negative eigenvalues. Moreover, λ = 0 is an eigenvalue of

Problems 2 and 5, with associated eigenfunction y0 = 1, but λ = 0 isn’t an eigenvalue of Problems 1, 3,
or 4.

Proof We consider Problems 1-4, and leave Problem 5 to you (Exercise 1). If y′′ + λy = 0, then
y(y′′ + λy) = 0, so

∫ L

0

y(x)(y′′(x) + λy(x)) dx = 0;

therefore,

λ

∫ L

0

y2(x) dx = −
∫ L

0

y(x)y′′(x) dx. (11.1.1)

Integration by parts yields

∫ L

0

y(x)y′′(x) dx = y(x)y′(x)

∣

∣

∣

∣

L

0

−
∫ L

0

(y′(x))2 dx

= y(L)y′(L) − y(0)y′(0) −
∫ L

0

(y′(x))2 dx.

(11.1.2)

However, if y satisfies any of the boundary conditions of Problems 1-4, then

y(L)y′(L) − y(0)y′(0) = 0;
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hence, (11.1.1) and (11.1.2) imply that

λ

∫ L

0

y2(x) dx =

∫ L

0

(y′(x))2 dx.

If y 6≡ 0, then
∫ L

0
y2(x) dx > 0. Therefore λ ≥ 0 and, if λ = 0, then y′(x) = 0 for all x in (0, L) (why?),

and y is constant on (0, L). Any constant function satisfies the boundary conditions of Problem 2, so

λ = 0 is an eigenvalue of Problem 2 and any nonzero constant function is an associated eigenfunction.

However, the only constant function that satisfies the boundary conditions of Problems 1, 3, or 4 is y ≡ 0.

Therefore λ = 0 isn’t an eigenvalue of any of these problems.

Example 11.1.1 (Problem 1) Solve the eigenvalue problem

y′′ + λy = 0, y(0) = 0, y(L) = 0. (11.1.3)

Solution From Theorem 11.1.1, any eigenvalues of (11.1.3) must be positive. If y satisfies (11.1.3) with

λ > 0, then

y = c1 cos
√
λx+ c2 sin

√
λx,

where c1 and c2 are constants. The boundary condition y(0) = 0 implies that c1 = 0. Therefore

y = c2 sin
√
λx. Now the boundary condition y(L) = 0 implies that c2 sin

√
λL = 0. To make

c2 sin
√
λL = 0 with c2 6= 0, we must choose

√
λ = nπ/L, where n is a positive integer. Therefore

λn = n2π2/L2 is an eigenvalue and

yn = sin
nπx

L

is an associated eigenfunction.

For future reference, we state the result of Example 11.1.1 as a theorem.

Theorem 11.1.2 The eigenvalue problem

y′′ + λy = 0, y(0) = 0, y(L) = 0

has infinitely many positive eigenvalues λn = n2π2/L2, with associated eigenfunctions

yn = sin
nπx

L
, n = 1, 2, 3, . . . .

There are no other eigenvalues.

We leave it to you to prove the next theorem about Problem 2 by an argument like that of Exam-

ple 11.1.1 (Exercise 17).

Theorem 11.1.3 The eigenvalue problem

y′′ + λy = 0, y′(0) = 0, y′(L) = 0

has the eigenvalue λ0 = 0, with associated eigenfunction y0 = 1, and infinitely many positive eigenvalues

λn = n2π2/L2, with associated eigenfunctions

yn = cos
nπx

L
, n = 1, 2, 3 . . . .

There are no other eigenvalues.
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Example 11.1.2 (Problem 3) Solve the eigenvalue problem

y′′ + λy = 0, y(0) = 0, y′(L) = 0. (11.1.4)

Solution From Theorem 11.1.1, any eigenvalues of (11.1.4) must be positive. If y satisfies (11.1.4) with
λ > 0, then

y = c1 cos
√
λx+ c2 sin

√
λx,

where c1 and c2 are constants. The boundary condition y(0) = 0 implies that c1 = 0. Therefore

y = c2 sin
√
λx. Hence, y′ = c2

√
λ cos

√
λx and the boundary condition y′(L) = 0 implies that

c2 cos
√
λL = 0. To make c2 cos

√
λL = 0 with c2 6= 0 we must choose

√
λ =

(2n− 1)π

2L
,

where n is a positive integer. Then λn = (2n− 1)2π2/4L2 is an eigenvalue and

yn = sin
(2n− 1)πx

2L

is an associated eigenfunction.

For future reference, we state the result of Example 11.1.2 as a theorem.

Theorem 11.1.4 The eigenvalue problem

y′′ + λy = 0, y(0) = 0, y′(L) = 0

has infinitely many positive eigenvalues λn = (2n− 1)2π2/4L2, with associated eigenfunctions

yn = sin
(2n− 1)πx

2L
, n = 1, 2, 3, . . . .

There are no other eigenvalues.

We leave it to you to prove the next theorem about Problem 4 by an argument like that of Exam-

ple 11.1.2 (Exercise 18).

Theorem 11.1.5 The eigenvalue problem

y′′ + λy = 0, y′(0) = 0, y(L) = 0

has infinitely many positive eigenvalues λn = (2n− 1)2π2/4L2, with associated eigenfunctions

yn = cos
(2n− 1)πx

2L
, n = 1, 2, 3, . . . .

There are no other eigenvalues.

Example 11.1.3 (Problem 5) Solve the eigenvalue problem

y′′ + λy = 0, y(−L) = y(L), y′(−L) = y′(L). (11.1.5)
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Solution From Theorem 11.1.1, λ = 0 is an eigenvalue of (11.1.5) with associated eigenfunction y0 = 1,

and any other eigenvalues must be positive. If y satisfies (11.1.5) with λ > 0, then

y = c1 cos
√
λx+ c2 sin

√
λx, (11.1.6)

where c1 and c2 are constants. The boundary condition y(−L) = y(L) implies that

c1 cos(−
√
λL) + c2 sin(−

√
λL) = c1 cos

√
λL+ c2 sin

√
λL. (11.1.7)

Since

cos(−
√
λL) = cos

√
λL and sin(−

√
λL) = − sin

√
λL, (11.1.8)

(11.1.7) implies that

c2 sin
√
λL = 0. (11.1.9)

Differentiating (11.1.6) yields

y′ =
√
λ
(

−c1 sin
√
λx+ c2 cos

√
λx
)

.

The boundary condition y′(−L) = y′(L) implies that

−c1 sin(−
√
λL) + c2 cos(−

√
λL) = −c1 sin

√
λL + c2 cos

√
λL,

and (11.1.8) implies that

c1 sin
√
λL = 0. (11.1.10)

Eqns. (11.1.9) and (11.1.10) imply that c1 = c2 = 0 unless
√
λ = nπ/L, where n is a positive integer.

In this case (11.1.9) and (11.1.10) both hold for arbitrary c1 and c2. The eigenvalue determined in this

way is λn = n2π2/L2, and each such eigenvalue has the linearly independent associated eigenfunctions

cos
nπx

L
and sin

nπx

L
.

For future reference we state the result of Example 11.1.3 as a theorem.

Theorem 11.1.6 The eigenvalue problem

y′′ + λy = 0, y(−L) = y(L), y′(−L) = y′(L),

has the eigenvalue λ0 = 0, with associated eigenfunction y0 = 1 and infinitely many positive eigenvalues

λn = n2π2/L2, with associated eigenfunctions

y1n = cos
nπx

L
and y2n = sin

nπx

L
, n = 1, 2, 3, . . . .

There are no other eigenvalues.

Orthogonality

We say that two integrable functions f and g are orthogonal on an interval [a, b] if

∫ b

a

f(x)g(x) dx = 0.

More generally, we say that the functions φ1, φ2, . . . , φn, . . . (finitely or infinitely many) are orthogonal

on [a, b] if
∫ b

a

φi(x)φj(x) dx = 0 whenever i 6= j.

The importance of orthogonality will become clear when we study Fourier series in the next two sections.
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Example 11.1.4 Show that the eigenfunctions

1, cos
πx

L
, sin

πx

L
, cos

2πx

L
, sin

2πx

L
, . . . , cos

nπx

L
, sin

nπx

L
, . . . (11.1.11)

of Problem 5 are orthogonal on [−L, L].

Solution We must show that
∫ L

−L

f(x)g(x) dx = 0 (11.1.12)

whenever f and g are distinct functions from (11.1.11). If r is any nonzero integer, then

∫ L

−L

cos
rπx

L
dx =

L

rπ
sin

rπx

L

∣

∣

∣

∣

L

−L

= 0. (11.1.13)

and
∫ L

−L

sin
rπx

L
dx = − L

rπ
cos

rπx

L

∣

∣

∣

∣

L

−L

= 0.

Therefore (11.1.12) holds if f ≡ 1 and g is any other function in (11.1.11).

If f(x) = cosmπx/L and g(x) = cos nπx/L where m and n are distinct positive integers, then

∫ L

−L

f(x)g(x) dx =

∫ L

−L

cos
mπx

L
cos

nπx

L
dx. (11.1.14)

To evaluate this integral, we use the identity

cosA cosB =
1

2
[cos(A− B) + cos(A+ B)]

with A = mπx/L and B = nπx/L. Then (11.1.14) becomes

∫ L

−L

f(x)g(x) dx =
1

2

[

∫ L

−L

cos
(m− n)πx

L
dx+

∫ L

−L

cos
(m+ n)πx

L
dx

]

.

Since m − n and m + n are both nonzero integers, (11.1.13) implies that the integrals on the right are
both zero. Therefore (11.1.12) is true in this case.

If f(x) = sinmπx/L and g(x) = sinnπx/L where m and n are distinct positive integers, then

∫ L

−L

f(x)g(x) dx =

∫ L

−L

sin
mπx

L
sin

nπx

L
dx. (11.1.15)

To evaluate this integral, we use the identity

sinA sinB =
1

2
[cos(A −B) − cos(A +B)]

with A = mπx/L and B = nπx/L. Then (11.1.15) becomes

∫ L

−L

f(x)g(x) dx =
1

2

[

∫ L

−L

cos
(m− n)πx

L
dx−

∫ L

−L

cos
(m+ n)πx

L
dx

]

= 0.
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If f(x) = sinmπx/L and g(x) = cosnπx/L where m and n are positive integers (not necessarily

distinct), then
∫ L

−L

f(x)g(x) dx =

∫ L

−L

sin
mπx

L
cos

nπx

L
dx = 0

because the integrand is an odd function and the limits are symmetric about x = 0.

Exercises 19-22 ask you to verify that the eigenfunctions of Problems 1-4 are orthogonal on [0, L].
However, this also follows from a general theorem that we’ll prove in Chapter 13.

11.1 Exercises

1. Prove that λ = 0 is an eigenvalue of Problem 5 with associated eigenfunction y0 = 1, and that any

other eigenvalues must be positive. HINT: See the proof of Theorem 11.1.1.

In Exercises 2-16 solve the eigenvalue problem.

2. y′′ + λy = 0, y(0) = 0, y(π) = 0

3. y′′ + λy = 0, y′(0) = 0, y′(π) = 0

4. y′′ + λy = 0, y(0) = 0, y′(π) = 0

5. y′′ + λy = 0, y′(0) = 0, y(π) = 0

6. y′′ + λy = 0, y(−π) = y(π), y′(−π) = y′(π)

7. y′′ + λy = 0, y′(0) = 0, y′(1) = 0

8. y′′ + λy = 0, y′(0) = 0, y(1) = 0

9. y′′ + λy = 0, y(0) = 0, y(1) = 0

10. y′′ + λy = 0, y(−1) = y(1), y′(−1) = y′(1)

11. y′′ + λy = 0, y(0) = 0, y′(1) = 0

12. y′′ + λy = 0, y(−2) = y(2), y′(−2) = y′(2)

13. y′′ + λy = 0, y(0) = 0, y(2) = 0

14. y′′ + λy = 0, y′(0) = 0, y(3) = 0

15. y′′ + λy = 0, y(0) = 0, y′(1/2) = 0

16. y′′ + λy = 0, y′(0) = 0, y′(5) = 0

17. Prove Theorem 11.1.3.

18. Prove Theorem 11.1.5.

19. Verify that the eigenfunctions

sin
πx

L
, sin

2πx

L
, . . . , sin

nπx

L
, . . .

of Problem 1 are orthogonal on [0, L].

20. Verify that the eigenfunctions

1, cos
πx

L
, cos

2πx

L
, . . . , cos

nπx

L
, . . .

of Problem 2 are orthogonal on [0, L].



CHAPTER 12
Fourier Solutions of Partial Differential

IN THIS CHAPTER we use the series discussed in Chapter 11 to solve partial differential equations that

arise in problems of mathematical physics.

SECTION 12.1 deals with the partial differential equation

ut = a2uxx,

which arises in problems of conduction of heat.

SECTION 12.2 deals with the partial differential equation

utt = a2uxx,

which arises in the problem of the vibrating string.

SECTION 12.3 deals with the partial differential equation

uxx + uyy = 0,

which arises in steady state problems of heat conduction and potential theory.

SECTION 12.4 deals with the partial differential equation

urr +
1

r
ur +

1

r2
uθθ = 0,

which is the equivalent to the equation studied in Section 1.3 when the independent variables are polar

coordinates.

619
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12.1 THE HEAT EQUATION

We begin the study of partial differential equations with the problem of heat flow in a uniform bar of
length L, situated on the x axis with one end at the origin and the other at x = L (Figure 12.1.1).

We assume that the bar is perfectly insulated except possibly at its endpoints, and that the temperature

is constant on each cross section and therefore depends only on x and t. We also assume that the thermal

properties of the bar are independent of x and t. In this case, it can be shown that the temperature

u = u(x, t) at time t at a point x units from the origin satisfies the partial differential equation

ut = a2uxx, 0 < x < L, t > 0,

where a is a positive constant determined by the thermal properties. This is the heat equation.

 x = 0  x = L

 x

Figure 12.1.1 A uniform bar of length L

To determine u, we must specify the temperature at every point in the bar when t = 0, say

u(x, 0) = f(x), 0 ≤ x ≤ L.

We call this the initial condition. We must also specify boundary conditions that u must satisfy at the
ends of the bar for all t > 0. We’ll call this problem an initial-boundary value problem.

We begin with the boundary conditions u(0, t) = u(L, t) = 0, and write the initial-boundary value

problem as
ut = a2uxx, 0 < x < L, t > 0,
u(0, t) = 0, u(L, t) = 0, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ L.

(12.1.1)

Our method of solving this problem is called separation of variables (not to be confused with method

of separation of variables used in Section 2.2 for solving ordinary differential equations). We begin by
looking for functions of the form

v(x, t) = X(x)T (t)

that are not identically zero and satisfy

vt = a2vxx, v(0, t) = 0, v(L, t) = 0
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for all (x, t). Since

vt = XT ′ and vxx = X′′T,

vt = a2vxx if and only if

XT ′ = a2X′′T,

which we rewrite as
T ′

a2T
=
X′′

X
.

Since the expression on the left is independent of x while the one on the right is independent of t, this

equation can hold for all (x, t) only if the two sides equal the same constant, which we call a separation

constant, and write it as −λ; thus,
X′′

X
=

T ′

a2T
= −λ.

This is equivalent to
X′′ + λX = 0

and

T ′ = −a2λT. (12.1.2)

Since v(0, t) = X(0)T (t) = 0 and v(L, t) = X(L)T (t) = 0 and we don’t want T to be identically zero,
X(0) = 0 and X(L) = 0. Therefore λ must be an eigenvalue of the boundary value problem

X′′ + λX = 0, X(0) = 0, X(L) = 0, (12.1.3)

and X must be a λ-eigenfunction. From Theorem 11.1.2, the eigenvalues of (12.1.3) are λn = n2π2/L2,

with associated eigenfunctions

Xn = sin
nπx

L
, n = 1, 2, 3, . . . .

Substitutingλ = n2π2/L2 into (12.1.2) yields

T ′ = −(n2π2a2/L2)T,

which has the solution

Tn = e−n2π2a2t/L2

.

Now let

vn(x, t) = Xn(x)Tn(t) = e−n2π2a2t/L2

sin
nπx

L
, n = 1, 2, 3, . . .

Since

vn(x, 0) = sin
nπx

L
,

vn satisfies (12.1.1) with f(x) = sinnπx/L. More generally, if α1, . . . , αm are constants and

um(x, t) =

m
∑

n=1

αne
−n2π2a2t/L2

sin
nπx

L
,

then um satisfies (12.1.1) with

f(x) =

m
∑

n=1

αn sin
nπx

L
.

This motivates the next definition.
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Definition 12.1.1 The formal solution of the initial-boundary value problem

ut = a2uxx, 0 < x < L, t > 0,
u(0, t) = 0, u(L, t) = 0, t > 0,
u(x, 0) = f(x), 0 ≤ x ≤ L

(12.1.4)

is

u(x, t) =

∞
∑

n=1

αne
−n2π2a2t/L2

sin
nπx

L
, (12.1.5)

where

S(x) =
∞
∑

n=1

αn sin
nπx

L

is the Fourier sine series of f on [0, L]; that is,

αn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

We use the term “formal solution” in this definition because it’s not in general true that the infinite

series in (12.1.5) actually satisfies all the requirements of the initial-boundary value problem (12.1.4)

when it does, we say that it’s an actual solution of (12.1.4).
Because of the negative exponentials in (12.1.5), u converges for all (x, t) with t > 0 (Exercise 54).

Since each term in (12.1.5) satisfies the heat equation and the boundary conditions in (12.1.4), u also has

these properties if ut and uxx can be obtained by differentiating the series in (12.1.5) term by term once

with respect to t and twice with respect to x, for t > 0. However, it’s not always legitimate to differentiate

an infinite series term by term. The next theorem gives a useful sufficient condition for legitimacy of term

by term differentiation of an infinite series. We omit the proof.

Theorem 12.1.2 A convergent infinite series

W (z) =

∞
∑

n=1

wn(z)

can be differentiated term by term on a closed interval [z1, z2] to obtain

W ′(z) =

∞
∑

n=1

w′
n(z)

(where the derivatives at z = z1 and z = z2 are one-sided) provided that w′
n is continuous on [z1, z2]

and

|w′
n(z)| ≤Mn, z1 ≤ z ≤ z2, n = 1, 2, 3, . . . ,

where M1, M2, . . . , Mn, . . . , are constants such that the series
∑∞

n=1Mn converges.

Theorem 12.1.2, applied twice with z = x and once with z = t, shows that uxx and ut can be obtained
by differentiating u term by term if t > 0 (Exercise 54). Therefore u satisfies the heat equation and the

boundary conditions in (12.1.4) for t > 0. Therefore, since u(x, 0) = S(x) for 0 ≤ x ≤ L, u is an actual

solution of (12.1.4) if and only if S(x) = f(x) for 0 ≤ x ≤ L. From Theorem 11.3.2, this is true if f is

continuous and piecewise smooth on [0, L], and f(0) = f(L) = 0.

In this chapter we’ll define formal solutions of several kinds of problems. When we ask you to solve
such problems, we always mean that you should find a formal solution.
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Example 12.1.1 Solve (12.1.4) with f(x) = x(x2 − 3Lx+ 2L2).

Solution From Example 11.3.6, the Fourier sine series of f on [0, L] is

S(x) =
12L3

π3

∞
∑

n=1

1

n3
sin

nπx

L
.

Therefore

u(x, t) =
12L3

π3

∞
∑

n=1

1

n3
e−n2π2a2t/L2

sin
nπx

L
.

If both ends of bar are insulated so that no heat can pass through them, then the boundary conditions

are

ux(0, t) = 0, ux(L, t) = 0, t > 0.

We leave it to you (Exercise 1) to use the method of separation of variables and Theorem 11.1.3 to

motivate the next definition.

Definition 12.1.3 The formal solution of the initial-boundary value problem

ut = a2uxx, 0 < x < L, t > 0,
ux(0, t) = 0, ux(L, t) = 0, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ L
(12.1.6)

is

u(x, t) = α0 +

∞
∑

n=1

αne
−n2π2a2t/L2

cos
nπx

L
,

where

C(x) = α0 +

∞
∑

n=1

αn cos
nπx

L

is the Fourier cosine series of f on [0, L]; that is,

α0 =
1

L

∫ L

0

f(x) dx and αn =
2

L

∫ L

0

f(x) cos
nπx

L
dx, n = 1, 2, 3, . . . .

Example 12.1.2 Solve (12.1.6) with f(x) = x.

Solution From Example 11.3.1, the Fourier cosine series of f on [0, L] is

C(x) =
L

2
− 4L

π2

∞
∑

n=1

1

(2n− 1)2
cos

(2n− 1)πx

L
.

Therefore

u(x, t) =
L

2
− 4L

π2

∞
∑

n=1

1

(2n− 1)2
e−(2n−1)2π2a2t/L2

cos
(2n− 1)πx

L
.

We leave it to you (Exercise 2) to use the method of separation of variables and Theorem 11.1.4 to
motivate the next definition.
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Definition 12.1.4 The formal solution of the initial-boundary value problem

ut = a2uxx, 0 < x < L, t > 0,
u(0, t) = 0, ux(L, t) = 0, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ L
(12.1.7)

is

u(x, t) =

∞
∑

n=1

αne
−(2n−1)2π2a2t/4L2

sin
(2n− 1)πx

2L
,

where

SM (x) =

∞
∑

n=1

αn sin
(2n− 1)πx

2L

is the mixed Fourier sine series of f on [0, L]; that is,

αn =
2

L

∫ L

0

f(x) sin
(2n− 1)πx

2L
dx.

Example 12.1.3 Solve (12.1.7) with f(x) = x.

Solution From Example 11.3.4, the mixed Fourier sine series of f on [0, L] is

SM (x) = −8L

π2

∞
∑

n=1

(−1)n

(2n− 1)2
sin

(2n− 1)πx

2L
.

Therefore

u(x, t) = −8L

π2

∞
∑

n=1

(−1)n

(2n− 1)2
e−(2n−1)2π2a2t/4L2

sin
(2n− 1)πx

2L
.

Figure 12.1.2 shows a graph of u = u(x, t) plotted with respect to x for various values of t. The line

y = x corresponds to t = 0. The other curves correspond to positive values of t. As t increases, the

graphs approach the line u = 0.
We leave it to you (Exercise 3) to use the method of separation of variables and Theorem 11.1.5 to

motivate the next definition.

Definition 12.1.5 The formal solution of the initial-boundary value problem

ut = a2uxx, 0 < x < L, t > 0,
ux(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ L
(12.1.8)

is

u(x, t) =

∞
∑

n=1

αne
−(2n−1)2π2a2t/4L2

cos
(2n− 1)πx

2L
,

where

CM (x) =

∞
∑

n=1

αn cos
(2n− 1)πx

2L

is the mixed Fourier cosine series of f on [0, L]; that is,

αn =
2

L

∫ L

0

f(x) cos
(2n− 1)πx

2L
dx.
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 L
 x

 u

 y = x

Figure 12.1.2

Example 12.1.4 Solve (12.1.8) with f(x) = x− L.

Solution From Example 11.3.3, the mixed Fourier cosine series of f on [0, L] is

CM (x) = −8L

π2

∞
∑

n=1

1

(2n− 1)2
cos

(2n− 1)πx

2L
.

Therefore

u(x, t) = −8L

π2

∞
∑

n=1

1

(2n− 1)2
e−(2n−1)2π2a2t/4L2

cos
(2n− 1)πx

2L
.

Nonhomogeneous Problems

A problem of the form
ut = a2uxx + h(x), 0 < x < L, t > 0,
u(0, t) = u0, u(L, t) = uL, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ L
(12.1.9)

can be transformed to a problem that can be solved by separation of variables. We write

u(x, t) = v(x, t) + q(x), (12.1.10)

where q is to be determined. Then

ut = vt and uxx = vxx + q′′
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so u satisfies (12.1.9) if v satisfies

vt = a2vxx + a2q′′(x) + h(x), 0 < x < L, t > 0,
v(0, t) = u0 − q(0), v(L, t) = uL − q(L), t > 0,

v(x, 0) = f(x) − q(x), 0 ≤ x ≤ L.

This reduces to
vt = a2vxx, 0 < x < L, t > 0,
v(0, t) = 0, v(L, t) = 0, t > 0,
v(x, 0) = f(x) − q(x), 0 ≤ x ≤ L

(12.1.11)

if

a2q′′ + h(x) = 0, q(0) = u0, q(L) = uL.

We can obtain q by integrating q′′ = −h/a2 twice and choosing the constants of integration so that
q(0) = u0 and q(L) = uL. Then we can solve (12.1.11) for v by separation of variables, and (12.1.10) is

the solution of (12.1.9).

Example 12.1.5 Solve
ut = uxx − 2, 0 < x < 1, t > 0,
u(0, t) = −1, u(1, t) = 1, t > 0,

u(x, 0) = x3 − 2x2 + 3x− 1, 0 ≤ x ≤ 1.

Solution We leave it to you to show that

q(x) = x2 + x− 1

satisfies

q′′ − 2 = 0, q(0) = −1, q(1) = 1.

Therefore

u(x, t) = v(x, t) + x2 + x− 1,

where

vt = vxx, 0 < x < 1, t > 0,

v(0, t) = 0, v(1, t) = 0, t > 0,

and
v(x, 0) = x3 − 2x2 + 3x− 1 − x2 − x+ 1 = x(x2 − 3x+ 2).

From Example 12.1.1 with a = 1 and L = 1,

v(x, t) =
12

π3

∞
∑

n=1

1

n3
e−n2π2t sinnπx.

Therefore

u(x, t) = x2 + x− 1 +
12

π3

∞
∑

n=1

1

n3
e−n2π2t sinnπx.

A similar procedure works if the boundary conditions in (12.1.11) are replaced by mixed boundary

conditions

ux(0, t) = u0, u(L, t) = uL, t > 0
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or

u(0, t) = u0, ux(L, t) = uL, t > 0;

however, this isn’t true in general for the boundary conditions

ux(0, t) = u0, ux(L, t) = uL, t > 0.

(See Exercise 47.)

USING TECHNOLOGY

Numerical experiments can enhance your understanding of the solutions of initial-boundary value prob-

lems. To be specific, consider the formal solution

u(x, t) =

∞
∑

n=1

αne
−n2π2a2t/L2

sin
nπx

L
,

of (12.1.4), where

S(x) =

∞
∑

n=1

αn sin
nπx

L

is the Fourier sine series of f on [0, L]. Consider the m-th partial sum

um(x, t) =

m
∑

n=1

αne
−n2π2a2t/L2

sin
nπx

L
. (12.1.12)

For several fixed values of t (including t = 0), graph um(x, t) versus t. In some cases it may be useful to

graph the curves corresponding to the various values of t on the same axes in other cases you may want to

graph the various curves sucessively (for increasing values of t), and create a primitive motion picture on

your monitor. Repeat this experiment for several values of m, to compare how the results depend upon

m for small and large values of t. However, keep in mind that the meanings of “small” and “large” in this
case depend upon the constants a2 and L2. A good way to handle this is to rewrite (12.1.12) as

um(x, t) =

m
∑

n=1

αne
−n2τ sin

nπx

L
,

where

τ =
π2a2t

L2
, (12.1.13)

and graph um versus x for selected values of τ .

These comments also apply to the situations considered in Definitions 12.1.3-12.1.5, except that (12.1.13)

should be replaced by

τ =
π2a2t

4L2
,

in Definitions 12.1.4 and 12.1.5.
In some of the exercises we say “perform numerical experiments.” This means that you should perform

the computations just described with the formal solution obtained in the exercise.
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12.1 Exercises

1. Explain Definition 12.1.3.

2. Explain Definition 12.1.4.

3. Explain Definition 12.1.5.

4. C Perform numerical experiments with the formal solution obtained in Example 12.1.1.

5. C Perform numerical experiments with the formal solution obtained in Example 12.1.2.

6. C Perform numerical experiments with the formal solution obtained in Example 12.1.3.

7. C Perform numerical experiments with the formal solution obtained in Example 12.1.4.

In Exercises 8-42 solve the initial-boundary value problem. Where indicated by C , perform numerical

experiments. To simplify the computation of coefficients in some of these problems, check first to see if

u(x, 0) is a polynomial that satisfies the boundary conditions. If it does, apply Theorem 11.3.5; also, see

Exercises 11.3.35(b), 11.3.42(b), and 11.3.50(b).

8. ut = uxx, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = x(1 − x), 0 ≤ x ≤ 1

9. ut = 9uxx, 0 < x < 4, t > 0,

u(0, t) = 0, u(4, t) = 0, t > 0,
u(x, 0) = 1, 0 ≤ x ≤ 4

10. ut = 3uxx, 0 < x < π, t > 0,

u(0, t) = 0, u(π, t) = 0, t > 0,
u(x, 0) = x sinx, 0 ≤ x ≤ π

11. C ut = 9uxx, 0 < x < 2, t > 0,
u(0, t) = 0, u(2, t) = 0, t > 0,

u(x, 0) = x2(2 − x), 0 ≤ x ≤ 2

12. ut = 4uxx, 0 < x < 3, t > 0,
u(0, t) = 0, u(3, t) = 0, t > 0,

u(x, 0) = x(9 − x2), 0 ≤ x ≤ 3

13. ut = 4uxx, 0 < x < 2, t > 0,
u(0, t) = 0, u(2, t) = 0, t > 0,

u(x, 0) =

{

x, 0 ≤ x ≤ 1,
2 − x, 1 ≤ x ≤ 2.

14. ut = 7uxx, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = x(3x4 − 10x2 + 7), 0 ≤ x ≤ 1

15. ut = 5uxx, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = x(x3 − 2x2 + 1), 0 ≤ x ≤ 1

16. ut = 2uxx, 0 < x < 1, t > 0,

u(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = x(3x4 − 5x3 + 2), 0 ≤ x ≤ 1
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17. C ut = 9uxx, 0 < x < 4, t > 0,

ux(0, t) = 0, ux(4, t) = 0, t > 0,

u(x, 0) = x2, 0 ≤ x ≤ 4

18. ut = 4uxx, 0 < x < 2, t > 0,

ux(0, t) = 0, ux(2, t) = 0, t > 0,

u(x, 0) = x(x− 4), 0 ≤ x ≤ 2

19. C ut = 9uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,
u(x, 0) = x(1 − x), 0 ≤ x ≤ 1

20. ut = 3uxx, 0 < x < 2, t > 0,

ux(0, t) = 0, ux(2, t) = 0, t > 0,

u(x, 0) = 2x2(3 − x), 0 ≤ x ≤ 2

21. ut = 5uxx, 0 < x <
√

2, t > 0,

ux(0, t) = 0, ux(
√

2, t) = 0, t > 0,

u(x, 0) = 3x2(x2 − 4), 0 ≤ x ≤
√

2

22. C ut = 3uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = x3(3x− 4), 0 ≤ x ≤ 1

23. ut = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,
u(x, 0) = x2(3x2 − 8x+ 6), 0 ≤ x ≤ 1

24. ut = uxx, 0 < x < π, t > 0,

ux(0, t) = 0, ux(π, t) = 0, t > 0,

u(x, 0) = x2(x− π)2, 0 ≤ x ≤ π

25. ut = uxx, 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = sinπx, 0 ≤ x ≤ 1

26. C ut = 3uxx, 0 < x < π, t > 0,
u(0, t) = 0, ux(π, t) = 0, t > 0,

u(x, 0) = x(π − x), 0 ≤ x ≤ π

27. ut = 5uxx, 0 < x < 2, t > 0,

u(0, t) = 0, ux(2, t) = 0, t > 0,
u(x, 0) = x(4 − x), 0 ≤ x ≤ 2

28. ut = uxx, 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = x2(3 − 2x), 0 ≤ x ≤ 1

29. ut = uxx, 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = (x− 1)3 + 1, 0 ≤ x ≤ 1

30. C ut = uxx, 0 < x < 1, t > 0,
u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = x(x2 − 3), 0 ≤ x ≤ 1

31. ut = uxx, 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,
u(x, 0) = x3(3x− 4), 0 ≤ x ≤ 1
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32. ut = uxx, 0 < x < 1, t > 0,

u(0, t) = 0, ux(1, t) = 0, t > 0,

u(x, 0) = x(x3 − 2x2 + 2), 0 ≤ x ≤ 1

33. ut = 3uxx, 0 < x < π, t > 0,
ux(0, t) = 0, u(π, t) = 0, t > 0,

u(x, 0) = x2(π − x), 0 ≤ x ≤ π

34. ut = 16uxx, 0 < x < 2π, t > 0,
ux(0, t) = 0, u(2π, t) = 0, t > 0,

u(x, 0) = 4, 0 ≤ x ≤ 2π

35. ut = 9uxx, 0 < x < 4, t > 0,
ux(0, t) = 0, u(4, t) = 0, t > 0,

u(x, 0) = x2, 0 ≤ x ≤ 4

36. C ut = 3uxx, 0 < x < 1, t > 0,
ux(0, t) = 0, u(1, t) = 0, t > 0,

u(x, 0) = 1 − x, 0 ≤ x ≤ 1

37. ut = uxx, 0 < x < 1, t > 0,
ux(0, t) = 0, u(1, t) = 0, t > 0,

u(x, 0) = 1 − x3, 0 ≤ x ≤ 1

38. ut = 7uxx, 0 < x < π, t > 0,

ux(0, t) = 0, u(π, t) = 0, t > 0,
u(x, 0) = π2 − x2, 0 ≤ x ≤ π

39. ut = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = 4x3 + 3x2 − 7, 0 ≤ x ≤ 1

40. ut = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = 2x3 + 3x2 − 5, 0 ≤ x ≤ 1

41. C ut = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = x4 − 4x3 + 6x2 − 3, 0 ≤ x ≤ 1

42. ut = uxx, 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 0, t > 0,
u(x, 0) = x4 − 2x3 + 1, 0 ≤ x ≤ 1

In Exercises 43-46 solve the initial-boundary value problem. Perform numerical experiments for specific

values of L and a.

43. C ut = a2uxx, 0 < x < L, t > 0,

ux(0, t) = 0, ux(L, t) = 0, t > 0,

u(x, 0) =

{

1, 0 ≤ x ≤ L
2 ,

0, L
2 < x < L

44. C ut = a2uxx, 0 < x < L, t > 0,
u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) =

{

1, 0 ≤ x ≤ L
2
,

0, L
2
< x < L
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