Exam 2 will be on Wednesday, October 20, 2010. The syllabus for Exam 2 consists of Sections 3.1, 3.2, 3.3 and 4.1 to 4.5. You should know the main definitions, results and computational techniques that we have covered in these sections. Here is a short list of particularly important problems that have been previously assigned: Section 3.2: 19, 23; Section 3.3: 5, 23, 27; Section 4.2: 3, 7, 9; Section 4.3: 7; Section 4.4: 3, 9, 11; Section 4.5: 1, 3, 5, 13. Here are some additional exercises of a similar nature that have appeared on previous exams.

You may also review Exam 2 from Summer 2008, but note that questions 2 and 5 of that exam cover topics in chapter 4 that we have not yet covered.

- 1. Which of the following subsets of \mathbb{R}^3 are subspaces? Give a reason in each case.
 - (a) $S_1 = \{(a, b, c) : a = 0\}.$
 - (b) $S_2 = \{(a, b, c) : ab = 0\}.$
 - (c) $S_3 = \{(a, b, c) : a + b = 0\}.$
 - (d) $S_4 = \{(a, b, c) : a = 1\}.$

2. Let
$$A = \begin{bmatrix} 1 & -3 & 0 & -5 \\ -1 & 4 & 1 & 7 \\ 2 & 1 & 7 & 4 \\ 2 & -2 & 4 & -2 \end{bmatrix}$$
 and let $R = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Then R is the reduced row-

echelon matrix associated to A. Compute a basis for the solution space of the homogeneous equation Ax = 0.

- 3. Let $\underline{\mathbf{u}} = (-1, 2, 3, 1), \ \underline{\mathbf{v}} = (5, 0, 2, -1), \text{ and } \underline{\mathbf{w}} = (3, 4, 8, 1).$ Determine if the set $S = \{\underline{\mathbf{u}}, \underline{\mathbf{v}}, \underline{\mathbf{w}}\} \subset \mathbb{R}^4$ is linearly independent. If it is not linearly independent, find an explicit linear combination $k_1\underline{\mathbf{u}} + k_2\underline{\mathbf{v}} + k_3\underline{\mathbf{w}} = 0$ with at least one scalar $k_i \neq 0$.
- 4. Let $W = \text{Span}\{\underline{v}_1, \underline{v}_2, \underline{v}_3\}$ where $\underline{v}_1 = (1, -1, 2), \underline{v}_2 = (3, -2, 5)$ and $\underline{v}_3 = (2, -1, 3)$.
 - (a) Find a subset $S \subseteq \{\underline{v}_1, \underline{v}_2, \underline{v}_3\}$ which forms a basis of W.
 - (b) Write each \underline{v}_i which is not in S as a linear combination of the vectors in S.
- 5. Let $S = \{\underline{v}_1, \underline{v}_2\}$ be the basis of \mathbb{R}^2 with $\underline{v}_1 = (1, 1)$ and $\underline{v}_2 = (1, -1)$.
 - (a) If $\underline{\mathbf{v}} = (4, 2)$ compute the coordinate vector $(\underline{\mathbf{v}})_S$.
 - (b) If $(\underline{w})_S = (1, -4)$, then find \underline{w} .

6. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22}$ is a 2 × 2 matrix then we define the trace of A, denoted Tr(A) to be the real number a + d, i.e., the trace of a matrix A is the sum of the diagonal entries of A. Let $V = \{A \in M_{22} : \text{Tr}(A) = 0\}$. Then V is a subspace of M_{22} . Find a basis of V. What is the dimension of V?