In all homework problems, it is not sufficient to show only the answers. You must show your work. These exercises are based on Chapter Two.III.3 from the text.

1. Let
$$A = \begin{bmatrix} 0 & 1 & 3 \\ -1 & 0 & 1 \\ -1 & 2 & 7 \end{bmatrix}$$
.

- (a) Find a basis for the row space of the matrix A.
- (b) Find a basis for the column space of the matrix A.
- (c) Find a basis for the null space of the matrix A. (Recall that the null space of A is the solution space of the homogeneous linear system $A\vec{x} = \vec{0}$.)
- (d) Determine if each of the vectors $\vec{v} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$ is in the row space of A.

(e) Determine if each of the vectors
$$\vec{a} = \begin{bmatrix} 1\\1\\3 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 3\\1\\1 \end{bmatrix}$ is in the column space of A .

Solution. First find the reduced row-echelon form of the matrix A using Gauss-Jordan reduction:

$$\begin{array}{c} \begin{bmatrix} 0 & 1 & 3 \\ -1 & 0 & 1 \\ -1 & 2 & 7 \end{bmatrix} & \stackrel{\rho_1 \leftrightarrow \rho_2}{\longrightarrow} & \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 3 \\ -1 & 2 & 7 \end{bmatrix} \\ \stackrel{-\rho_1}{\longrightarrow} & \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ -1 & 2 & 7 \end{bmatrix} & \stackrel{\rightarrow}{\longrightarrow} & \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{bmatrix} \\ \stackrel{-}{\longrightarrow} \\$$

The last matrix is $\operatorname{rref}(A)$, the reduced row-echelon form of A. From this we can read off the answers to the first three parts:

(a) The nonzero rows of rref(A) form a basis of the row space of A. Thus, a basis is

$$\mathcal{R} = \langle \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 3 \end{bmatrix} \rangle.$$

(b) The first two columns of rref(A) contain the leading 1's of the nonzero rows of rref(A). The corresponding columns in A form a basis of the column space of A. Thus, a basis is

$$\mathcal{C} = \langle \begin{bmatrix} 0\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\2 \end{bmatrix} \rangle.$$

(c) We can read off the solutions to $A\vec{x} = \vec{0}$ from $\operatorname{rref}(A)$ (leading variables are x_1, x_2 and the only free variable is x_3) to get the nullspace of A is

Null Space(A) =
$$\left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ -3x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix} x_3 \mid x_3 \text{ is arbitrary} \right\}$$

Thus a basis of the null space of A is the single vector $\begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$.

(d) For \vec{v} to be in the row space of A we must have

$$\vec{v} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 1 & 3 \end{bmatrix}.$$

This gives the equations $c_1 = 1$, $c_2 = 1$ and $-c_1 + 3c_2 = 1$. This is an inconsistent system of equations (the third equation is not possible if the first two are satisfied). Thus \vec{v} is not in the row space of A.

However, $\vec{w} = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 3 \end{bmatrix}$, so \vec{w} is in the row space of A.

(e) In part (b), a basis C for the column space of A was found. To see is \vec{a} is in the column space of A, try to write \vec{a} as a linear combination of this basis:

$$\vec{a} = \begin{bmatrix} 1\\1\\3 \end{bmatrix} = c_1 \begin{bmatrix} 0\\-1\\-1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} c_2\\-c_1\\-c_1+2c_2 \end{bmatrix}$$

This gives the equations $c_2 = 1$, $-c_1 = 1$, $-c_1 + 2c_2 = 3$. These are satisfied for $c_1 = -1$, $c_2 = 1$ so

$$\vec{a} = - \begin{bmatrix} 0\\-1\\-1 \end{bmatrix} + \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$

so \vec{a} is in the column space of A. However, the same calculation with \vec{b} would lead to the equations $c_2 = 3$, $-c_1 = 1$, $-c_1 + 2c_2 = 1$. These equations are inconsistent, so \vec{b} is not in the column space of A.

2. In each part (a)–(b) assume that the matrix A is row equivalent to the matrix B. Without additional calculations, list rank(A) and dim(Nullspace(A)). Then find bases for Colspace(A), Rowspace(A), and Nullspace(A).

(a)
$$A = \begin{bmatrix} 1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 0 & 3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

- ▶ Solution. There are 3 nonzero rows in $B = \operatorname{rref}(A)$, so $\operatorname{rank}(A) = 3$.
 - There are 2 columns of B not containing a leading 1, so $\dim(\text{Nullspace}(A)) = 2$.
 - A basis for Colspace(A) consists of the columns of A corresponding to the columns of B containing a leading 1. That is, columns 1, 3, and 5 of A. Thus, a basis is

$$\mathcal{C} = \langle \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} 4\\6\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\-3\\0 \end{bmatrix} \rangle.$$

• A basis of the row space of A consists of the nonzero rows of the row equivalent echelon matrix B. Thus, a basis is

$$\mathcal{B} = \langle \begin{bmatrix} 1 & 3 & 0 & 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix} \rangle.$$

• The null space of A is the same as the null space of B, so solve the homogeneous system $B\vec{x} = \vec{0}$:

$$c_1 + 3c_2 + 3c_4 = 0$$

$$c_3 - c_4 = 0$$

$$c_5 = 0$$

$$0 = 0$$

The free variables are c_2 and c_4 so the null space of A is thus

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{bmatrix} = \begin{bmatrix} -3c_2 - 3c_4 \\ c_2 \\ c_4 \\ c_4 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} c_2 + \begin{bmatrix} -3 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} c_4$$

where c_2 and c_4 are arbitrary. Thus a basis of the null space of A is

$$\mathcal{N} = \langle \begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1\\1\\0 \end{bmatrix} \rangle.$$

(b)
$$A = \begin{bmatrix} 2 & 6 & -6 & 6 & 3 & 6 \\ -2 & -3 & 6 & -3 & 0 & -6 \\ 4 & 9 & -12 & 9 & 3 & 12 \\ -2 & 3 & 6 & 3 & 3 & -6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & -3 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

▶ Solution. There was a misprint in the matrix B. The lower right entry should have been 0, rather than 1. With a 1 in that position the matrix B is **not** row equivalent to A, nor is it is reduced row echelon form. The solution given is based on correcting this misprint.

- There are 3 nonzero rows in $B = \operatorname{rref}(A)$, so $\operatorname{rank}(A) = 3$.
- There are 3 columns of B not containing a leading 1, so $\dim(\text{Nullspace}(A)) = 3$.
- A basis for Colspace(A) consists of the columns of A corresponding to the columns of B containing a leading 1. That is, columns 1, 2, and 5 of A. Thus, a basis is

$$\mathcal{C} = \langle \begin{bmatrix} 2\\-2\\4\\-2 \end{bmatrix}, \begin{bmatrix} 6\\-3\\9\\3 \end{bmatrix}, \begin{bmatrix} 3\\0\\3\\3 \end{bmatrix} \rangle$$

• A basis of the row space of A consists of the nonzero rows of the row equivalent echelon matrix B. Thus, a basis is

$$\mathcal{B} = \langle \begin{bmatrix} 1 & 0 & -3 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \rangle.$$

• The null space of A is the same as the null space of B, so solve the homogeneous system $B\vec{x} = \vec{0}$:

$$c_{1} -3c_{3} + 3c_{6} = 0$$

$$c_{2} + c_{4} = 0$$

$$c_{5} = 0$$

$$0 = 0$$

The free variables are c_2 , c_4 , and c_6 so the null space of A is thus

$$\begin{bmatrix} c_1\\c_2\\c_3\\c_4\\c_5\\c_6 \end{bmatrix} = \begin{bmatrix} 3c_3 - 3c_6\\-c_4\\c_3\\c_4\\c_5\\c_6 \end{bmatrix} = \begin{bmatrix} 3\\0\\1\\0\\0\\0\\0 \end{bmatrix} c_3 + \begin{bmatrix} 0\\-1\\0\\1\\0\\0\\0 \end{bmatrix} c_4 + \begin{bmatrix} -3\\0\\0\\0\\0\\1 \end{bmatrix} c_6$$

where c_3 , c_4 , and c_6 are arbitrary. Thus a basis of the null space of A is

$$\mathcal{N} = \langle \begin{bmatrix} 3\\0\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\0\\0\\1 \end{bmatrix} \rangle$$

Math 2085

- 3. Answer each of the following questions related to the rank of an $m \times n$ matrix A.
 - (a) If a 4×7 matrix A has rank 3, find the dimension of Nulllspace(A) and Rowspace(A).
 - (b) If the null space of an 8×7 matrix A is 5-dimensional, what is the dimension of the column space of A?
 - (c) If the null space of an 8×5 matrix A is 3-dimensional, what is the dimension of the row space of A?
 - (d) If A is a 7×5 matrix, what is the largest possible rank of A?
 - (e) If A is a 5×7 matrix, what is the largest possible rank of A?

▶ Solution. All of the answers are based on the rank-nullity theorem proved in class. Recall that this theorem states:

Theorem. If A is an $m \times n$ matrix, then $\operatorname{rank}(A) + \dim(\operatorname{Nullspace}(A)) = n$, where n is the number of columns of A.

Also recall that $\operatorname{rank}(A) = \operatorname{dim}(\operatorname{Rowspace})(A) = \operatorname{dim}(\operatorname{Colspace}(A))$. Thus the answers to the questions are:

- (a) $\dim(\operatorname{Rowspace}(A)) = \operatorname{rank}(A) = 3$, so $\dim(\operatorname{Nullspace}(A)) = 7 \operatorname{rank}(A) = 4$.
- (b) If dim(Nullspace(A)) = 5, then rank(A) = 7 dim(Nullspace(A)) = 2. Thus, dim(Colspace(A)) = rank(A) = 2.
- (c) If $\dim(\text{Nullspace}(A)) = 3$, then $\operatorname{rank}(A) = 5 \dim(\text{Nullspace}(A)) = 2$. Thus, $\dim(\text{Rowspace}(A)) = \operatorname{rank}(A) = 2$.
- (d) Since dim(Rowspace(A)) \leq the number of rows of A and dim(Colspace(A)) \leq the number of columns of A, and each of these dimensions is equal to the rank(A), it follows that if A is $m \times n$, then rank(A) $\leq \min(m, n)$. Thus, the largest possible rank for a 7 \times 5 matrix is 5.
- (e) The largest possible rank for a 5×7 matrix is also 5.