In all homework problems, it is not sufficient to show only the answers. *You must show your work.* These exercises are based on Chapter Four.I and Four.III from the text.

1. Compute the determinant of each of the following matrices. Show your work.

	$\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$		Γο Ω	2	21		$\lceil 2 \rceil$	1	1	0	1
(a)				ა ი	$\begin{array}{c}2\\4\\2\\1\end{array}$	(c)	2	1	2	$0 \\ -1$	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(b)		2 1			0	0	1	2	0
		~ /	$\begin{vmatrix} 3 & 0 \\ r & 0 \end{vmatrix}$				1	0	3	1	1
	$\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$		53	2			2	1	1	2	1

2. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$. If det A = 7, compute the determinant of each of the following matrices.

(a)
$$\begin{bmatrix} a & b & d \\ 2d & 2e & 3f \\ 5g & 5h & 5i \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 3d & 3e & 3f \\ a & b & c \\ g & h & i \end{bmatrix}$$
 (c)
$$\begin{bmatrix} a & b & c \\ 2d + a & 2e + b & 2f + c \\ g & h & i \end{bmatrix}$$
Compute det B^5 where $B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

4. Verify that det(AB) = det A det B for each of the following pairs of matrices.

(a)
$$A = \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 3 & 6 \\ -1 & -2 \end{bmatrix}, B = \begin{bmatrix} 4 & 2 \\ -1 & -1 \end{bmatrix}$

- 5. Let A and B be 3×3 matrices, with det A = 4 and det B = -3. Use properties of determinants to compute:
 - (a) det AB (b) det 5A (c) det B^{-1} (d) det A^3 (e) det BAB^{-2}
- 6. For each of the following matrices, determine all of the values of x for which the matrix is not invertible.

(a)
$$A = \begin{bmatrix} 2-x & 1\\ 4 & 2-x \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 4-x & -4 & -4\\ 2 & -2-x & -4\\ 3 & -3 & -4-x \end{bmatrix}$

3.