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The set of even permutations in S, is written A,. It can be easily shown that
A, is a subgroup of S,; A, is called the alternating group of degree n.

EXERCISES 5.1

1. Find the number of distinct cycles of length 7 in §,,.
2. Write the cycle structure classification table for Ss.
3. Write the cycle structure classification table for Se.
4

. Prove that the relation ~ (of conjugate elements) in a group is an equivalence
5. Show that the permutations

relation.
(1 2 3 45 7
“=\7 5 1 6 4 3

(123 4567
P={4 16 23 7 5

have the same cycle structure. Find o such that 8 =oao
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6. Let k, denote the number of permutcmons in S, that do not fix any element.

Prove that
1 1 i (—1)!
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'
Hence show that k, is equal to the integer closest to ’l
e

7. Let X be an infinite set. Let N denote the set of those permutations of X that
move a finite number of elements in X. Prove that N is a normal subgroup of Sx.

8. Show that for every n > 1, A, is a normal subgroup of S, and [S,, : A,]l=2.

2

. Show that for every n > 2, the center of the group S, is trivial.

5.2 GROUPS OF SYMMETRIES

In this section we consider the application of group theory to study the symmetries
of a geometrical figure (in a plane or three-dimensional space).
Let d(x, y) denote the distance between the points x and y.

Definition 5.2.1 Let X be a set of points. A bijective mapping o : X — X iscalled
a symmetry of X if
d(o(x),0(y))=d(x,y) forallx,yeX

In other words, a symmetry of a set of points X is a permutation of X that preserves
the distance between every two points in X.
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We write Sym (X ) to denote the set of all symmetries of X. Obviously, Sym (X)
1s a subset of Sy.

THEOREM 5.2.2 Let X be a set of points. Then Sym(X) is a subgroup of the
symmetric group Sy.

Proof: The identity permutation e € Sx is obviously a symmetry; hence e
Sym(X). Let o, 8 € Sym(X). Then, for all x, yeX,

d@™'B(x), a B() = d(a(a™ B(x)), ala™ B(y)))
= d(B(x), B(y))
== d()C, }’)

Hence o™ e Sym(X). This proves that Sym(X) is a subgroup of Sy. "

The group Sym(X) is called the group of symmetries (or symmetry group)
of X. Note that the symmetric group Sy is defined for any set X, but Sym(X) is
defined for only a set X of points in which the distance between every two points
is given.

Consider the symmetries of a polygon P. (By P we mean the set of points
constituting the polygon.) Let V be the set of vertices of the polygon. It is clear from
geometrical consideration that any symmetry o of the polygon must map a vertex
to a vertex. Thus o determines a symmetry & of the set V. Conversely, given any
symmetry & of V, itdetermines uniquely a symmetry o of the polygon that coincides
with & on the vertices. Hence we can identify the symmetries of the polygon with
the symmetries of the set of its vertices. In other words, speaking more formally,
the group of symmetries of P is isomorphic with the group of symmetries of V.

Let us now consider a regular polygon of 7 sides (n > 3). Let us label the
vertices in counterclockwise order as 1,2, ..., n. Consider any symmetry o of the
set of vertices. Suppose o maps vertex 1 to vertex i. Then o must take vertex 2
to a vertex adjacent to i—that is, either i + 1 or i — 1. Once o(1) and o (2) are
fixed, the mapping o is completely determined by the fact that it preserves the
distance between every two points. So if o maps 2 to i + 1, then it must map
3,4,...t00i+2,i4+3,..., respectively. On the other hand, if o maps 2toi — 1,

then it must map 3,4, ... toi —2,i —3,.. ., respectively. Thus there are exactly
two symmetries, o; and t;, that take vertex 1 to ;. These are given by
(1 2 3 1
TIENG i1 P42 L i
(1 2 3 . n
[ A B R

Thus we see that a regular polygon of n sides has in all 2x symimetries, oy, 1;,
i=1,...,n.
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Note that the vertex after n is 1, so i + 1 =1 when i = n. Therefore, in the
above representation for o, t;, + is to be understood as addition modulo .

The mapping o; preserves the cyclic order of the vertices, but t; reverses
the cyclic order. Geometrically, o; represents a rotation of the polygon about its
center through an angle 2m (i — 1)/n, and 1; represents a reflection in the diameter
lying midway between vertices 1 and . (By a rotation, we mean a rotation of the
polygon in its own plane. A reflection in a diameter is equivalent to a rotation
about the diameter through an angle 7, but this rotation takes place in the third
dimension and not in the plane of the polygon.) It is obvious that o is the identity
permutation, and 7, represents reflection in the diameter through vertex 1. The
identity permutation is equivalent to a rotation through an angle 27 .

The 2n symmetries oy, 7;, i =1, ...,n, can be expressed in terms of two
basic symmetries. We write « =05, 8 =11, $0

1 2 ... n 1 2 ... n
2(2 3. 1>’ ’3:<1 no. 2>

Geometrically, o represents a rotation through angle 27 /n and moves each ver-

tex i to i + 1. For any integer m=1,...,n, @™ represents a rotation through
angle 27 (m — 1)/n; hence o' =0,,. Further o« 18(1) =™ (1) =m and
" 1B(2)=a""'(n)=m — 1. Since a symmetry is determined uniquely by its

effect on vertices 1 and 2 it follows that oz”’ '8 = t,,. Thus the 2n symmetries are
givenby o a8 m=1,

It is clear that o = e and ﬁz = e. Further, consider Ba: fa(1)=B2)=n
and Ba(2)=pBB)=n — 1. Hence Ba =1, =ca""'B. Thus we have proved the
following result.

THEOREM 5.2.3 The group G of symmetries of a regular polygon of n sides is
given by
G=le,a,....a" ' BB, ...,a" 18}

where & represents a rotation through an angle 277 /n, and g represents reflection in
a diameter through a vertex. Moreover, the following relations hold in the group G-

O[”ZE, ,32:8, /30(:0[”_1,3

Any group of 2n elements that has the same structure as the group G above
is called a dihedral group of degree n and denoted by D,. That is, we have the
following definition.

Definition 5.2.4 A dihedral group of degree n, written D,,, is a group of order
2n given by

D,={e,a,...,a" ' b,ab, ... d""b)
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with the following defining relations:

a"=e, b =e, ba=a""'b

We have thus shown that the group of symmetries of a regular polygon of n
sides (n > 3) is adihedral group of degree n. We shall shortly explain the geometrical
interpretation of the dihedral groups Dy and D, as groups of symmetries. For the
present, let us observe that D, = {e, b}, with b* =e, is a cyclic group of order 2.
Further, D, = {e, a, b, ab} has the defining relations a*> = ¢, b> = ¢, and ba = ab.
Hence D, is identical with a Klein’s 4-group.

If we interpret the elements of the dihedral group D,,, n > 2, as permutations
of the set {1, ..., n} of vertices of a regular polygon, then D, is a subgroup of the
symmetric group S,. In particular, D has six elements and hence D3y = S3. For
n>3, D, is a proper subgroup of S,,. '

An equilateral triangle is a regular polygon of three sides. Hence its group of
symmetries is Ds. In this case, we can also arrive at this result directly as follows:
The distance between every pair of vertices of an equilateral triangle is the same,
and hence every permutation of the vertices is a symmetry. Therefore the group
of symmetries of an equilateral triangle is S3, which, as noted above, is the same
as Ds.

Consider now an isosceles (but not equilateral) triangle. It has only one sym-
metry 8 in addition to the identity permutation—namely, the one given by reflection
in the median bisecting the angle between the two equal sides. So the group G of
symmetries of an isosceles triangle is given by G = {e, 8}, with 2 =e. As noted
above, G is a dihedral group of degree 1. '

Consider next the symmetries of a rectangle (other than a square). It is eas-
ily seen that there are only three symmetries o, B, y in addition to e. Geomet-
rically, these represent a rotation through an angle 7 and reflections in the lines
through the center and parallel to the sides of the rectangle. Labeling the vertices as
1,2, 3, 41in order, we can write these symmetries as permutations of the vertices as
follows:

a=(13)24), B=012)34), y=(1423)

Itis easily verified that « f = y = Br. Hence the group of symmetries of a rectangle
is given by G = {e, «, B, @B}, with the defining relations a? = e, 8 = ¢, Ba = aB.
So G is a dihedral group of degree 2.

We can summarize the results proved above as follows: The group of symme-
tries of an isosceles triangle is D;. The group of symmetries of a rectangle is D,.
For any n > 2, the group of symmetries of a regular polygon of 1 sides is D,,.

The dihedral group D, has a subgroup C,, = {e, a, ..., a" "'} that, geometri-
cally, consists of all rotational symmetries of the polygon.
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The symmetry group of a geometric figure may be infinite. For example, a
circle has infinitely many symmetries. It can be shown that if the symmetry group
G of a plane figure is finite, then G is either D, or C,, for some n. For example, the
symmetry group of this figure is Cq.

Let us now consider the symmetries of three-dimensional geometric objects.
Consider first a regular tetrahedron. Let the vertices be labeled as 1, 2, 3, 4. Asin the
case of an equilateral triangle, the distance between every two vertices of a regular
tetrahedron is the same. Hence every permutation of the vertices is a symmetry.
Therefore the symmetry group of a regular tetrahedron is S4. How many of the 24
permutations in Sy are rotations? It is clear that by a suitable rotation we can take
vertex 1 to any vertex i = 1, 2, 3, 4. Having done that, we can rotate the tetrahedron
about an axis through the new position of vertex 1 through angles 0, 27 /3, and 4r /3
to obtain three symmetries. Thus there are in all 4 x 3 == 12 rotational symmetries.
They form a subgroup of the group of all symmetries of the tetradedron.

The following table gives the 12 rotational symmetries of a regular tetrahedron
as permutations of the vertices and their geometric description as rotations. The
edge i — j denotes the edge joining vertices i and j.

Permutation Axis and Angle of Rotation

N =e any axis, rotation through angle 2 )

(234),(243)  axis through vertex |, angles 27 /3 and 4o /3
(134),(143)  axis through vertex 2, angles 27 /3 and 415 /3
(124),(142)  axis through vertex 3, angles 27 /3 and 47 /3
(123),(132)  axis through vertex 4, angles 27 /3 and 47 /3

(12)(34) axis through middle points of edges 1-2 and 3-4, angle &
(13)24) axis through middle points of edges 1-3 and 2-4, angle
(14)(23) axis through middle points of edges 1-4 and 2-3, angle &

Let us now consider the symmetries of a cube. Let the vertices of the cube be
labeled 1, 2, ..., 8 such that vertices 2, 3, and 4 are adjacent to vertex 1. Let o € Sg
be a symmetry. Suppose ¢ takes 1 to i. Then o must take 2, 3, and 4 to the three
vertices adjacent to i, which can be done in 6 ways. Hence there are 8§ x 6 =48
symmetries in all. Of these, 24 are rotational symmetries. The vertex 1 can be taken
to any vertex i by a rotation, and then we can rotate the cube around the diameter
through the new position of vertex 1 to obtain three symmetries.
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We can arrive at the same result by considering the symumetries of the cube as
permutations of its six faces. By arotation, face 1 can be taken tofacei (j = L,...6).
Having done that, we can rotate the cube around the diameter perpendicular to the
new position of the face 1 through angles 7 /2, 7, and 37 /2 and obtain three
symmetries. Hence there are 6 x 4 = 24 rotational symmetries.

The following table gives a geometric description of the various types of
rotational symmetries of a cube and their numbers.

Axis and Angle of Rotation Number
any axis, angle 27 1
axis through opposite vertices, angles 2 /3 and 4m /3 4x2=8
axis through centers of opposite faces, angles /2, 7, and %E 3x3=9
axis through middle points of opposite edges, angle o 6

EXERCISES 5.2

1. Find the Symmetry groups of the following figures.

"2. Find the Symmetry groups of the letters of the alphabet: A, B, ... 7.

3. Find the Symmetry groups of the conic sections ellipse, parabola, and
hyperbola.

4. Find the Symmetry groups of the following curves:

@ y?=x(1 - x?)

(b) y*=x2(1 — x?)

(©) r=1+cos6d

(d) r =sin26

(e) r =sin3H
5. Write the rotational symmetries of a cube as permutations of the vertices.
6. Write the rotational Symmetries of a cube as permutations of the edges.

7. Show that the rotational Symmetry group of a regular tetrahedron is isomorphic
with Ay.

8. Show that the rotational symmetry group of a cube is isomorphic with Sy.

9. Show that the center of the group D, is of order 1 or 2 according to whether n
is odd or even.
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5.3 COLORINGS AND COLOR PATTERNS

In this chapter we consider problems of the following type: Suppose we color each
vertex of an equilateral triangle white or black. Then there are 2 x 2 x 2 = 8 ways
in which the three vertices can be colored. Let us refer to them as color assignments
or colorings. We say that two color assignments are equivalent (or have the same
pattern) if one of them can be obtained from the other by rotating the triangle
through an appropriate angle or flipping it over. The second operation—namely,
flipping over—is equivalent to reflection in some mirror line. We then find that the
eight color assignments fall into four distinct patterns, as shown here.

/\ /\
If, instead of an equilateral triangle, we consider an isosceles triangle, then we find
that the eight color assignments fall into six distinct patterns.

JAWAWAWA
JANVAWAWA

Finally, if we consider a triangle whose sides are all of unequal lengths, then
no two colorings are equivalent, and hence all eight colorings are distinct patterns.
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Now suppose we make the criterion for equivalent colorings stricter by stip-
ulating that two colorings are equivalent if one can be obtained from the other
by a rotation only (and not reflection). Then we find that no two colorings of an
isosceles triangle are equivalent, so we have eight different patterns. In the case of
an equilateral triangle, however, this makes no difference, and we still have only
four patterns. But now suppose we use three colors, instead of only two. Then the
two colorings of an equilateral triangle shown below are equivalent if we allow
reflection, but they are not equivalent if we use the stricter criterion of allowing
only rotation.

P s o

We now formulate the general problem that we intend to consider. Let S be
a finite set whose elements are specified points or parts of some given geometric
figure. Suppose we assign to each element in S a color out of some given set of m
colors. The total number of ways in which such color assignments can be made is
mXxXmX---xXm=m", where n is the number of elementsin S. The problem is to
find the number of distinct patterns in which these m"” color assignments fall. For
recognizing distinct patterns, we may use either the weaker criterion of allowing
both rotations and reflections or the stricter criterion of allowing only rotations. It
is obvious that the number of distinct patterns under the weaker criterion is less
than or equal to the number under the stricter criterion.

It is clear from the examples discussed above that the number of distinct
patterns into which the m” color assignments fall depends not only on the numbers
m and n but also on the symmetry properties of the underlying geometric fi gure. The
greater the symmetry possessed by the figure, the larger the number of equivalent
pairs of colorings and therefore the smaller the number of distinct patterns.

5.4 ACTION OF A GROUP ON A SET

Let X be a nonempty set, and let G be a permutation group on X; that is, G is a
subgroup of the symmetric group Sx. So each element of G is a permutation of the
set X. Hence, forall g € G, x € X, g(x) is again an element of X. Moreover, since
the group operation in G is composition of mappings, we have the following two
properties for all x € X:

1. e(x) = x, where ¢ is the identity in G.
2. (gh)(x) = g(h(x)) for all g.hed.



222 5 SYMMETRY GROUPS AND COLOR PATTERNS

These two properties motivate the general concept of action of a group
on a set.

Definition 5.4.1 Let G be a group, and let X be a nonempty set. A mapping
*:G x X — X, with %(g, x) written g % x, is called an action of G on X if the
following conditions hold for all x € X:

(a) exx =ux, where e is the identity in G.
(b) (gh)yxx=g*(hxx) forallg,heG.

If there is an action of a group G on a set X, we say that G acts on X and
call X a G-set.

EXAMPLES

1. Given any nonempty set X, let G be a subgroup of the symmetric group Sy. For
any g € G and x € X, we define g * x = g(x). Then it follows from conditions
(@) and (b) in Definition 5.4.1 that % is an action of G on X. We say in this case
that G acts naturally on X. In particular, if G is the group of symmetries of a
set X of points in space, then G acts naturally on X.

2. Given any group G, let X = G. We define g * x = gx (the product of g and x
in the group G). Then * is an action of G on X. We say in this case that G acts
on itself by left translation. Further, if H is a subgroup of G, then G acts on the
quotient set G/ H by left translation on taking g x (aH) = (ga)H.

3. Given any group G, again take X =G. We define g * x =_gxg~'. Then
exx=exe '=x and (gh)*x=ghx(gh) ' = glhxh™Dg ' =gx (h*x)
for all x € X and g, h e G. Hence G acts on X. We say in this case that G
acts on itself by conjugation. Further, if N is a normal subgroup of G, then G
acts on the quotient set G/N by conjugation on taking g x (aH) = g(aH)g™".

We saw in Example 1 that if G is a subgroup of Sy, then G acts naturally on
X. Conversely, we can show that if a group G acts on a set X, then G determines a
subgroup of Sy that is a homomorphic image of G.

Let G be a group acting on a set X. Given g€ G, we define the map-
ping o, : X — X by the rule o4 (x) =g % x. Then o, is a permutation of X. Let
X, yeX.Theno(x)=0,(y) = gxx=gxy=g ' x(gxx) =gt x(g*y)=
(g7l *xx=(g"'g)xy=exx=cx Yy = x =y. Hence o, is injective. Further,
given y € X, let x = g~! x y. Then oox)=gxx=gx(g xy)=(glg)xy=
e*y=y. Hence o, is surjective. This proves that o, is a permutation of X.

Consider now the mapping ¢ : G — Sx given by g > o,. Let g, h € G. Then
forall xe X, og(x)=(gh)*xx=g* (h*x)= 04(on(x)) = (0,04)(x). Hence
¢(gh) = ¢(g)¢(h). This proves that ¢ is a homomorphism. Hence Im ¢ is a
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subgroup of Sx and a homomorphic image of G. We write Gy to denote Im ¢
and refer to it as the permutation group on X induced by G.

Moreover, if the identity e in G is the only element such that e % x = x for
- all x € X, then ker ¢ = {e}, and so ¢ is an isomorphism and G is isomorphic with
Gx. In this case we can identify each g in G with o ¢» and consider G as a sub-
group of Sy.

For the sake of convenience, we shall henceforth write simply gx instead of
g% X.

Let G be a group acting on a set X. For any a € X, the orbit of a under G is
defined to be the set

Orb(a) ={ga| g € G}

THEOREM 5.4.2 Let G be a group acting on a set X. Then the orbits in X under
G form a partition of X,

Proof: For any x, y € X, let x ~y mean that x = gy for some g € G. We claim
that ~ is an equivalence relation. For any x € X, x = ex and hence x ~ x. If x = gy
forsome g € G, then g 'x =g~ (gy) = (¢7'g)y =ey=y.Hence x ~ y=y~x.
If x =gy and y =hz for some g,h e G, then x = (gh)z and hence x ~y, y~
z = x ~z. This proves that ~ is an equivalence relation in X. For any a € X, the
equivalence class of a under ~ is

Clu(ay={xeX|x~a}={galgeG}=0rba)

Hence the orbits in X under G are the equivalence classes under ~ and therefore
form a partition of X. m

The partition of X formed by the set of orbits under G is denoted by X/G
and called the orbit decomposition of X under G.

Again, let G be a group acting on a set X. Let g€ G and x € X. If gx = x,
we say g fixes x. Given x € X, the set of all elements in G that fix x is called the
stabilizer of x and written Stab(x); that is,

Stab(x)={ge G| gx =x}
THEOREM 5.4.3 Let G be a group acting on a set X, and let x € X. Then

(a) Stab(x) is a subgroup of G.
(b) The index of the subgroup Stab(x) in G is

(G: Stab(x)) = |0rb(x)]
Proof: (a) We write S = Stab(x). Since ex = x, we have e S. If g,hes, then

(g 'mMx=g""(hx) =g 'x =g (gx) = (g 'g)x =ex =x and hence g~'h e S.
This proves that S is a subgroup of G.
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(b) As usual, let G/S denote the set of left cosets of S in G. We define
¢:G/S— Orb(x)
by the rule

$(gS) =

We claim that ¢ is a bijective mapping. If gS = /S, then g~k € S;hence g ' hx = x
and therefore gx = g(g~'hx) = hx. This shows that ¢ is well defined. If ¢(gS) =
@(hS), then gx = hx and hence g~} hx = x, which implies that g~/ € §; therefore
g8 =~hS. This proves that ¢ is injective. If y € Orb(x), then y = gx = ¢(gS) for
some g € G. Hence ¢ is surjective and therefore bijective. Hence (G : Stab(x)) =
IG/SI=10rb(x)|. =

Now we prove the main theorem that enables us to count the number of color
patterns. Given g € G, the set of all elements in X that are fixed by g is called the
fixture of g and written Fix(g); thatis,

Fix(g)={xeX|gx=x}

THEOREM 5.4.4 (Burnside theorem) Let G be a finite group acting on a finite set
X. Then the number k of orbits in X under G is given by

|G]Z F(g)

geG
where F(g) = Fix(g)] is the number of elements in X that are fixed by g.

Proof: We count in two ways the number of ordered pairs (g, x) in G x X such
that g fixes x. We write
P={(g,x)eG x X |.gx =x}

If gx =x, then g € Stab{x) and x € Fix(g). Hence, given x € X, the number of
elements in G that fix x is equal to |Stab(x)|. On the other hand, given g € G, the
number of elements in X that are fixed by g is equal to |Fix(g)|. Hence

Y IStab(x)|=|P|=)  |Fix(g)| (1
xeX geCG
By Theorem 5.4.3,
o |G|
[Orb{x)| = (G : Stab(x)) = m—lStab(xﬂ
Hence
Stab = |G 2
XEZX' tab(x)| = | ',CEZXIO b @)
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Now for any orbit T € X/ G,

ZIOFb(X)! ZITI ITI -

xel
Therefore, since the orbits in X form a partition of X,

X
Z|0rb<x>|_ 2 ZIOrb(x)l lE‘Zk

xeX TeX/G xeT
Hence, using (1) and (2) we obtain

i |Ozb(x)| Gl Zl tab(x)l—@}:iFix(gﬂ

xeX geG
This completes the proof. =

Burnside theorem can be paraphrased as follows: If a group G actsonaset X,
then the number of orbits in X under G is equal to the average number of elements
in X fixed by an element in G.

5.5 BURNSIDE THEOREM AND COLOR
PATTERNS

We now take up the original problem that we posed earlier in this chapter: finding
the number of patterns in the colorings of a given set of points. We shall see how
Burnside theorem is used to obtain the solution.

Using our earlier notation, we let § be a set of n elements representing some
specified points (or parts) of a given geometric figure. To each element in S we
assign some color out of a given set of m colors. Th1s can be done in m" ways,
which we refer to as m-colorings of S .

Let X denote the set of all m-colorings of S. Let G be a group of symmetries
of the set §. The group G acts naturally on the set S. Therefore G also acts on
" the set X. Given g€ G and x € X, gx represents the color assignment obtained
by performing on the coloring x the symmetry operation (rotation or reflection)
represented by g. Two color assignments x and y are equivalent if and only if

= gx for some g in G. Hence all color assignments that are equivalent to x lie in
the orbit of x under G. Each orbit represents a color pattern. Thus the number of
distinct patterns is equal to the number of orbits in the set X under the action of the
group G. This number is given by Burnside theorem.

Suppose the points in the set S are coplanar. Then the group of symmetries
of S is either some dihedral group

Dy={e,a,...,a  BaB, ... a7 B}

(where o represents a rotation through angle 27 /g, and f is areflection) or its cyclic
subgroup Cy={e,a,..., ad™1y, consisting of all rotations in D, . If G = Dy, then
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the number of orbits in X under G gives the number of color patterns under rotations
and reflections. If we wish to find the number of patterns under the stricter criterion
of allowing rotations only, then we apply Burnside theorem to find the number of
orbits under the group H = C, instead of under G.

In the application of Burnside theorem, we have to compute the numbers F (g).
Foreach g € G, F(g) is the number of color assignments that remain invariant under
the action of the symmetry operation (rotation or reflection) represented by g. The
identity element e in G fixes every x € X, and hence F(e) =m". The following
examples illustrate how we find these numbers F(g) for other elements in G. The
first example is the one with which we started our discussion in this chapter—
namely, coloring the vertices of an equilateral triangle—but now we consider the
general case of m colors.

Example 5.5.1 Each vertex of an equilateral triangle is colored by one of m
given colors. Find the number of distinct patterns among all possible colorings.

3 1

Solution. Since each vertex can be colored in m ways, the total number of color
assignments is m>. The group G of symmetries of an equilateral triangle is
the dihedral group of degree 3; that is,

G=Dy={e,a,a* B,ap, a«’*B)
where « represents a rotation through angle 27 /3, and 8 is a reflection in a
diameter.

As mentioned above, every color assignment is invariant under the iden-
tity e; hence F(e) =m3. To find the number of color assignments invariant
under the other elements of G, let us number the vertices 1, 2, and 3. Then o
takes vertex 1 to 2,2 to 3, and 3 to 1. If a color assignment is invariant under
a, then all three vertices must have the same color. This common color can
be any one of the m given colors. Hence there are m color assignments that
are invariant under o, so F(«) =m. The same reasoning applies to o2, so
F(a®) =m.

Now suppose  is the reflection in the diameter passing through vertex 1.
Then B takes vertex 2 to 3 and 3 to 2. If a color assignment is invariant .
under B, then vertices 2 and 3 must have the same color, so vertices 1 and 2
can have arbitrary colors. Hence the number of color assignments invariant
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under B is m?. The same argument holds for the other two reflections o8 and
«®B. Hence F(B) = F(ap) = F(a?B) =
By Burnside theorem, the number of patt’erns (that is, the number of
orbits under G) is

|G| )+ F(@) + F@®) + F(B) + F(ap) + F(a?B)}

= 8{1713 +2m + 3m?)

To find the number of patterns under the stricter criterion of rotations
only, we take the group of rotations H = {e, o, «?}. By Burnside theorem, the
number of orbits under the group H is

ko= —{F(e) -+ F (o) + Fla?)) = (m +2m)

In the particular case of only two colors, on putting m = 2 in the above results,
we obtain
k=k =4

In the case m =3, we have k =10, &' = 11.

Example 5.5.2 A rectangular dining table seats six persons, two along each
longer side and one on each shorter side. A colored napkin, having one of m
given colors, is placed for each person. Find the number of distinct patterns
among all possible color assignments.

1 2
6 3
5 4

Solution. The group of symmetries of the rectangle is
G=Dy)={e,a, B,aB)

where o is a rotation through angle 7, and B is a reflection. Let us take
to be the reflection in the line through the center parallel to the longer side
of the rectangle. Then «f8 represents the reflection in the line parallel to the
shorter side.

Let us number the six napkins as shown in the diagram above. Then «
takes napkin 1 to 4, 2 to 5, 3 to 6, and vice versa. If a color assignment is
invariant under the rotation «, then the napkins 1 and 4 must have the same
color, 2 and 5 must have the same color, and 3 and 6 must have the same color.
So we can assign arbitrary colors to napkins 1, 2, and 3. Hence the number of
color assignments invariant under « is m>.
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Now B keeps napkins 3 and 6 fixed, takes 1 to 5,210 4, and vice versa.
If a color assignment is invariant under B, then napkins 1 and 5 must have the
same color, and 2 and 4 must have the same color. So we can assign arbitrary
colors to napkins 1, 2, 3, and 6. Hence the number of color assignments
invariant under 8 is m*. By a similar reasoning, we find that the number of
color assignments invariant under a8 is m3. Therefore, by Burnside theorem,
the number of patterns is

1
k= l—é-’*{F(E) + F(@)+ F(B) + F(ap))
1
= 21(—(1716 +m* 4 2m3)
The number of patterns under the stricter criterion of rotations only is
1 1
k' = —2~{F(e) + Fa)) = E(mG +m*

In the particular case of two colors, we have k — 24, k' =36.

Example 5.5.3 (Polya’s neckties) A straight necktie in the form of a long
rectangular strip is divided into n bands of equal width parallel to the shorter
side. Each band is colored by one of m given colors. Find the number of ties
with distinct patterns.

AN 2 I Y Y A

Solution. The group of symmetries of a rectan gle is the dihedral group D,. But
in the present case the reflection in the line parallel to the longer side doesn’t
play any role. The relevant group here is

G =D =1e. a

where @ may represent a rotation through angle 7, or a reflection in the
line through the center parallel to the shorter side of the rectangle. (The two
operations are equivalent in this case.)

If a color assignment is invariant under o, then the bands 1 and n must
have the same color, the bands 2 and 71 — 1 must have the same color, and so
on. In general, the bands i and n + 1 — i must have the same color. If n is

. , n
even, we can assign arbitrary colors to bands 1, . . . , E; hence F(a) =m"/?,
n+1

Butif » is odd, the bands 1, . .. , can be assigned arbitrary colors. (The
n-+1

2

th band is the band in the middle.) Hence F(a) = m®+D/2,
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Therefore, by Burnside theorem, the number of patterns is

1
k =

= E{F(e)%-F(a)}

1
z(m” + m"? if n is even

1
E(m” +m@t02y it nis odd

For example, if m =2 and n=8, then k = 1(28 + 2%) = 136. Tf m = 2 and
n=09, then k = 1(2° + 25 =272.

Example 5.5.4 Suppose each vertex of a tegular hexagon is colored by
one of m given colors. Find the number of distinct patterns among all
colorings.

4

Solution. The group of symmetries of a regular hexagon is
G=Ds={e,a,a’,0’,a",a°, B, aB, B, B, a*, o’ B)

where « represents a rotation through angle 7 /3, and B is a reflection in a
diameter. Let us number the vertices, taken in order, as 1, 2,3,4,5 and 6. Ifa
color assignment is invariant under the rotation «, then each vertex must have
the same color; hence F (&) = m. If a color assignment is invariant under a?,
then vertices 1, 3, and 5 have the same color, and vertices 2, 4, and 6 have the
same color. Hence F(w?) = m?2. If a color assignment is invariant under o3,
then vertices 1 and 4 have the same color, 2 and 5 have the same color, and 3
and 6 have the same color. Hence F(a3) = m3. Similarly, we find F (a*) = m?
and F (o) =m.

Suppose B represents reflection in the diameter through vertex 1. If a
color assignment is invariant under the reflection B, then the vertices 2 and
6 have the same color and 3 and 5 have the same color. So we can assign
arbitrary colors to vertices 1, 2,3 and 4. Hence F(B) =m?.

Now a3 is a reflection in the diameter passing through the middle point
between vertices 1 and 2. If a color assignment is invariant under o8, then
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vertices 1 and 2 must have the same color, 3 and 6 have the same color, and
4 and 5 have the same color. Hence F(af8) =m?>.

By similar arguments, we obtain F(«?8) = F(a*8) =m* and F (o> B) =
F(c®B) = m>. Hence, by Burnside theorem, the number of patterns is

r— 1 [ Fe)+ F(a)+ F(e*) + F(@®) + F(a*) + F (&)
G| | HF(B) + F(ap) + F(a?B) + F(@’B) + F(a*B) + F (o)

1
= E(M() + 3m* + 4m> + 2m? + 2m)
Under the stricter criterion of rotations only, the number of patterns is

K = —é—{F(e) + F(a) + F() + F(o) + F(a*) + F (o))

1
= ~6-(m6 +m®+2m? + 2m)

In the particular case m =2, we have k = 13, k' = 14.

Example 5.5.4 has an important application in chemistry. From the carbon
ring consisting of six carbon atoms (figure a) one can obtain several chemically
different molecules by attaching to each carbon atom either a hydrogen atom H
or the group CHjs. For example, if a hydrogen atom is attached to each carbon
atom, the result is a molecule of benzene (figure b). The question is: How many
chemically different molecules can be obtained in this manner?

(b)

Itis obvious that the problem is mathematically the same as finding the number
of patterns in coloring the vertices of a regular hexagon with two colors. This
problem was solved in Example 5.5.4. There are 13 chemically different molecules
that can be obtained from the carbon ring.

From the examples above, we see that the main work involved in the applica-
tion of Burnside theorem is the computation of the numbers F(g). Now we obtain
a modified version of Burnside theorem that makes this task more systematic and
somewhat easier.
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As before, let § denote the set of points to be colored, and let C denote the
set of colors. Then any coloring of the points in S with colors from the set C is in
fact a mapping from S to C, so the set X of all color assignments is the set of all
mappings from S to C, which we write as X = CS. Let G be a group of symmetries
of the set . Then G acts naturally on the set S. Geometrically, it is evident that G
also acts on the set X, a fact we have used in the examples above. But let us now
give a general algebraic proof of this property.

Let G be a group acting on a set S, let C be an arbitrary nonempty set, and
let X = CS be the set of all mappings from S to C. The action of G on § induces
an action of G on X as follows: For any g € G, f € X, we define gx f € X asthe
mapping g * f : S — C with

(g* )= flg™'9

forall s €. Then e f(s)= f(e's) = f(s) for all s € S; hence e * J = f. Fur-
ther, forall g, h € G and f € X,

(@) )= J((@)™) = F ('8 7'8) = (% f)(g ") = (g (b ))(s)
holds for all s € S. Hence (gh) % f = (g x (h * ). This proves that * is an action
of G on X. '

Recall that each element g € G induces a permutation o, of the set § given
by the rule o, (s) = gs forall s € S.

THEOREM 5.5.5 Let G be a finite group acting on a finite set S, let C be a finite
set of m elements, and let X = C* be the set of all mappings from S to C. Then the
number of elements in X fixed by g € G is

F(g)=m"®

where 4(g) is the number of disjoint cycles (including cycles of length 1) in the
cycle decomposition of the permutation o ¢ of S induced by g.

Consequently, the number k of orbits in X under the action of G is given by

|

k=— m*(®
|G|

geG

Proof: 1etge G and f e X. If g % f=/F then f(s)=(g* f)(s)= f(g™'s) for
all s € §. Hence f(gs)= f(g™'gs) = f(s) for all s € S. Conversely, if fgs)=
f(s) for all s€S, then (gx* f)(s) = flg7's) = f(gg~'s) = f(s) for all seS;
hence g x f = f. Thus f € Fix(g) if and only if f(gs)= f(s)forallseS.

Let o, be the permutation of S determined by g; that is, o ¢(8) = gs for all
seS.Letog, =y, -y, be the decomposition of & ¢ into disjoint cycles (including
cycles of length 1). Any cycle in this decomposition is of the form

y=(agag?a.. g 'a)

If feFix(g), then f(a)= f(ga)="- = f(g" 'a); hence f is constant on the
elements in the cycle . This holds for every cycle y, in the decomposition of o P
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Conversely, if f is constant on every cycle y;, then f(gs)= f(s) for all s € S.
Hence f € Fix(g) if and only if f is constant on each cycle in the decomposi-
tion of 0.
Let feFix(g), and let fi,..., fo € C be the values of f on the cycles
Vi, .-,V respectively. Then fi, ..., fi can be each chosen in m ways. Hence
there are exactly m” elements in Fix(g). This proves the first part of the theorem.
Hence, by Burnside theorem,

1

._L —_ rg)
k= G Y F(g)= G >om .

geG geG

To illustrate the use of Theorem 5.5.5, we work out again the problem of
Example 5.5.2 by the new method.

Example 5.5.6 Do the problem of Example 5.5.2 by using Theorem 5.5.5.

Solution. With the notation of Example 5.5.2, we identify each element in the
group G with the permutation induced by it on the set {1, 2, 3,4, 5, 6} and
find its cycle decomposition:

e:<} A g)=<1)<2><3><4><5><6>
()(:(3l ? 2 L]L 3 §>2(14)(25)(36)
ﬁ=<; R 2>:<15><24><3><6>
(m;G ‘;‘ 2 ‘5‘ 2 2)2(12)(36)(45)

HenceA(e)=6, Mu)=3, A(B)=4, A(aﬂ);3.Thcrefore,byThcoremS.S.S,

1
k= 21—(1116 +m* 4+ 2m®)

In the following example we solve the general problem of which Examples
5.5.1 and 5.5.4 are special cases.

Example 5.5.7 Suppose each vertex of a regular polygon of 7 sides is colored
by one of m given colors. Find the number of distinct patterns among all
colorings.
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Solution. The group G of symmetries of a regular polygon of » sides is the
dihedral group of degree n,

) » .
G=D,={e,a,....a" ", B,af,...,a" "B}

where « is a rotation through angle 27 /n and B is reflection in a diameter,
say through the vertex 1. Interpreting the elements of G as permutations of

the set S ={1, ..., n} of the vertices, we have
(1 2 3 ... on ﬂ_123...n
““ 234 ...1) P71 non—1 ... 2
Consider firstthe set H = {e, «, ..., "'} of rotations in G. H isacyclic

subgroup of G of order n. Let g be an element of order r in the group H. We
show that the number of cycles in the decomposition of the permutation g is
rg)=n/r.Since g" = e, we have ¢g" (i) =i foreachi =1, ..., n. We claim
that given any i, r is the least positive integer such that g" (i) = i. Suppose
there exists a positive integer s < # such that ¢°(j) = j for some j. Now g°
is a rotation of the polygon. If it takes j to j, it must take each i to i, so
gi)y=iforalli=1,...,n. This means g° = e, which contradicts the fact
that g is of order r. Therefore given any i € {1, ..., n}, i generates the cycle
(i g(i)...g 1)) of length r. Hence each cycle in the cyclic decomposition
of the permutation g is of length r. It follows that the number of cycles is
Ag)y=n/r.

Since H is a cyclic group of order n, the order of every element in H
is a divisor of n. Moreover, given any divisor r of n, the number of elements
in H of order r is ¢(r), where ¢(r) denotes the number of positive integers
less than » and relatively prime to ». Hence the contribution to the summation
>~ m*® (in Theorem 5.5.5) from the rotations in the group G is

Z m*® = Z o(rym™'"
geH rin

Now consider the set KX of elements other than rotations in G; that is,
K=G-—H={8,aB,...,a" ' ). Here two cases arise.
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1. If n is odd, then each element g in K represents a reflection in a diameter
through some vertex j. So g fixes the vertex j and interchanges vertices

jH+iandj—ifori=1,..., il-;— Thus the cyclic decomposition of g

-1
consists of one cycle (j) of length 1 and . cycles (j —1j+1) of

1
length 2. Hence A(g) = nt .

2. Suppose n is even. Then exactly half of the elements in K represent re-
flections in a diameter passing through two opposite vertices, and the
n

remaining - elements represent reflections in a diameter passing through

the middle points of two opposite sides. It is easily seen that if g is a

2
reflection of the first type, then A(g) = n__—;—_ If g is of the second type,
then A(g) = g

Hence the contribution to the summation > m*® from the reflections in the
group G is

S =

gek 2
If we combine the contributions from H and K, the number k of patterns is

given by
A(g)
Gl S

geG

(Z orym™'" + nm("“)/2> if n is odd

rln

{nm(’““l)/2 if n 1s odd

n4+2/2 2m "2 if n is even

> ( Z Q(rym"" 4+ L(m+D/2 m”/2)> if n is even

rin

Under the stricter criterion of rotations only Lhe number of patterns is

/_«1 —
K= 2= ZW)’”

geH rin

EXERCISES 5.5
1. Find (without using the result of Example 5.5.7) the number of patterns
obtained on coloring the vertices of a square with m colors.
2. Repeat Exercise 1 for a regular pentagon.
3. Repeat Exercise 1 for a rectangle.

4. Find the number of distinct necklaces with p beads (p prime), where each bead
can have any one of n colors.
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11.
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16.
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18.
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. Find the number of distinct bracelets of six beads, where each bead is red, blue,

or white.

- Arectangular design consists of 11 parallel stripes of equal width. If each stripe

can be painted red, blue, or green, find the number of possible patterns.

- Each side of an equilateral triangle is divided into two equal parts, and each

part is colored red or green. Find the number of patterns.

. Each side of a square is divided into three equal parts, and each part is colored

red, yellow, or green. Find the number of patterns.

- Bach side of a regular polygon of n sides is divided into g equal parts, and each

part is painted with one of m colors. Find the number of patterns.

Each vertex of an equilateral triangle is colored with one of four colors such
that at least two vertices have different colors. Find the number of patterns.
Repeat Exercise 10 for a square.

The interior of an equilateral triangle is divided into six parts by the medians.
Each part is painted with one of m colors. Find the number of patterns.

The sides of a rectangle are 3 feet and 4 feet long. The rectangle is divided into
12 equal squares, and each square is painted with one of m colors. Find the
number of patterns.

Repeat Exercise 13 for a rectangle with sides of lengths 4 feet and 6 feet,
divided into 24 squares.

Repeat Exercise 13 for a rectangle with sides of lengths 5 feet and 7 feet,
divided into 35 squares.

Repeat Exercise 13 for a rectangle with sides of lengths p feet and ¢ feet,
divided into pg squares.

Find the number of ways in which the faces of a regular tetrahedron can be
painted with m colors.

Find the number of ways in which the faces of a cube can be painted with m
colors.

5.6 POLYA’S THEOREM AND PATTERN

INVENTORY

We now consider the problem of finding the number of color patterns in which the
colors occur with preassigned frequencies. For instance, we found in Example 5.5.2
the number of distinct patterns in m-colorings of six napkins arranged on a rectan-
gular table. We may now ask the question: What is the number of patterns in which
there are exactly one yellow, two red, and three green napkins? It is questions of

this type that can be answered by using Polya’s theorem, which we are about to
prove now.



