Chapter 1

INTEGERS

In this chapter we will develop some of the properties of the set of integers
Z={.,-2,-1,0,1,2,..}

that are needed in our later work. The use of Z for the integers reflects the strong
German influence on the modern development of algebra; Z comes from the German
word for numbers, “Zahlen.” Some of the computational techniques we study here
will reappear numerous times in later chapters. Furthermore, we will construct
some concrete examples that will serve as important building blocks for later work
on groups, rings, and fields.

To give a simple illustration of how we will use elementary number theory,

consider the matrix A = _(1) é].Thepowers of A are Az:[—é _(1) },
0 -1 10 01

3= 4 _ : 5 _ . 4 -

A"[l O:I’A"[Ol},A—li_l O},etc.SmceAlsthe

identity matrix I, the powers begin to repeat at A3, as we can see by writing
A’ = A'A =14 = A,
A% = A'A% = JA® = A%,
AT = AP = A = A, et

" How can we find A%!, for example? If we divide 231 by 4, we get 57, with
remainder 3, so 231 = 4 - 57 4 3. This provides our answer, since

A231 — A4-57+3 — A4-57A3 — (A4)57A3 — 157A3 — 1A3 — A3 .

We can see that two powers A7 and A* are equal precisely when j and k differ
by a multiple of 4. Altogether there are only the following four powers:

ot e [ [Vl
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A very similar situation occurs when we analyze the positive powers of the
complex number i. We have i! =i,i? = —1,i® = —i, and i* = 1. As before, we
see that i/ = i* if and only if j and k differ by a multiple of 4.

As a slightly different example, consider the positive powers of the complex

number ] /3
1 3.
Tt
There are only three distinct powers of w, as shown below:
1 V3,
w —5 -+ _E_l s

From this point on, the positive powers begin to repeat, and @’/ = o* if and only if
Jj and k differ by a multiple of 3.

To give a unified approach to situations analogous to the ones above, in which
we need to consider numbers that exhibit similar behavior when they differ by a
multiple of a number 7, we will develop the notion of congruence modulo n. The
notion of a congruence class will enable us to think of the collection of numbers
that behave in the same way as a single entity. The simplest example is congruence
modulo 2. When we consider two numbers to be similar if they differ by a multiple
of 2, we are just saying that the two numbers are similar if they have the same parity
(both are even, or both are odd). Another familiar situation of this type occurs when
telling time, since on a clock we do not distinguish between times that differ by a
multiple of 12 (or 24 if you are in Europe or the military).

In this chapter we will develop only enough number theory to be of use in later
chapters, when we study groups, rings, and fields. Historically, almost all civiliza-
tions have developed the integers (at least the positive ones) for use in agriculture,
commerce, etc. After the elementary operations (addition, subtraction, multipli-
cation, and division) have been understood, human curiosity has taken over and
individuals have begun to look for deeper properties that the integers may possess.

Nonmathematicians are often surprised that research is currently being done in
mathematics. They seem to believe that all possible questions have already been
answered. At this point ah analogy may be useful. Think of all that is known as
being contained in a ball. Adding knowledge enlarges the ball, and this means that
the surface of the ball—the interface between known and unknown where research
occurs—also becomes larger. In short, the more we know, the more questions there
are to ask. In number theory, perhaps more than in any other branch of mathematics,
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there are still many unanswered questions that can easily be posed. In fact, it seems
that often the simplest sounding questions require the deepest tools to resolve.
One aspect of number theory that has particular applications in algebra is the
one that concerns itself with questions of divisibility and primality. Fortunately for
our study of algebra, this part of number theory is easily accessible, and it is with
these properties of integers that we will deal in this chapter. Number theory got its
start with Euclid and much of what we do in the first two sections appears in his
book Elements. '
Our approach to number theory will be to study it as a tool for later use. In
the notes at the end of this chapter, we mention several important problems with
which number theorists are concerned. You can read the notes at this point, before
studying the material in the chapter. In fact, we suggest that you read them now,
because we hope to indicate why number theory is so interesting in its own right.

1.1 Divisors

Obviously, at the beginning of the book we must decide where to start mathemati-
cally. We would like to give a careful mathematical development, including proofs
of virtually everything we cover. However, that would take us farther into the
foundations of mathematics than we believe is profitable in a beginning course in
abstract algebra. As a compromise, we have chosen to assume a knowledge of basic
set theory and some familiarity with the set of integers.

For the student who is concerned about how the integers can be described for-
mally and how the basic properties of the integers can be deduced, we have provided
some very sketchy information in the appendix. Even there we have taken a naive
approach, rather than formally treating the basic notions of set theory as undefined
terms and giving the axioms that relate them. We have included a list of the Peano
postulates, which use concepts and axioms of set theory to characterize the natural
numbers. We then give an outline of the logical development of the set of integers,
and larger sets of numbers. '

In the beginning sections of this chapter we will assume some familiarity with
the set of integers, and we will simply take for granted some of the basic arithmetic
and order properties of the integers. (These properties should be familiar from ele-
mentary school arithmetic. They are listed in detail in Section A.3 of the appendix.)
The set {0, +1, 2, .. .} of integers will be denoted by Z, throughout the text, while
we will use N for the set {0, 1, 2, ...} of natural numbers.

Our first task is to study divisibility. We will then develop a theory of prime
numbers based on our work with greatest common divisors. The fact that exact
division is not always possible within the set of integers should not be regarded as a
deficiency. Rather, it is one source of the richness of the subject of number theory
and leads to many interesting and fundamental propositions about the integers.
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1.1.1 Definition. An integer a is called a multiple of an integer b if a = bq for
some integer q. In this case we also say that b is a divisor of a, and we use the

notation bla.

In the above case we can also say that b is a factor of a, or that a is divisible
by b. If b is not a divisor of a, meaning that a % bq for any g € Z, then we write
b }a. The set of all multiples of an integer a will be denoted by aZ. :

Be careful when you use the notation b la. It describes a relationship between
integers @ and b and does not represent a fraction. Furthermore, a handwritten
vertical line | can easily be confused with the symbol /. The statement 216 is a true
statement; 62 is a statement that is false. On the other hand, the equation 6/2 = 3
is written correctly, since the fraction 6/2 does represent the number 3. We have
at least three different uses for a vertical line: for “such that” in the “set-builder”
notation { | }, when talking about the absolute value of a number, and to indicate
that one integer is a divisor of another.

We note some elementary facts about divisors. If @ # 0 and bla, then |b] < |4]
since |b| < |b|lg] = |a| for some nonzero integer ¢. It follows from this observation
that if b1a and a | b, then |b| = |a| and so b = =+a. Therefore, if 11, then since it
is always true that 115, we must have b = =£1.

Note that the only multiple of 0 is O itself. On the other hand, for any integer a
we have 0 = a -0, and thus 0 is a multiple of any integer. With the notation we have
introduced, the set of all multiples of 3 is 3Z = {0, &3, £6, £9, .. .}. To describe
aZ precisely, we can write

={mecZ|m=aq forsome q € Z}.

Suppose that a is a multiple of b. Then every multiple of a is also a multiple of
b, and in fact we can say that a is a multiple of b if and only if every multiple of
a is also a multiple of b. In symbols we can write bla if and only if aZ < bZ.
Exercise 15 asks for a more detailed proof of this statement.

Before we study divisors and multiples of a fixed integer, we need to state an
important property of the set of natural numbers, which we will take as an axiom.

1.1.2 Axiom (Well-Ordering Principle). Every nonempty set of natural numbers
contains a smallest element.

The well-ordering principle is often used in arguments by contradiction. If we
want to show that all natural numbers have some property, we argue that if the set
of natural numbers not having the property were nonempty, it would have a least
member, and then we deduce a contradiction from this, using the particular facts of
the situation. The theory of mathematical induction (see Appendix A.4) formalizes
that sort of argument.

Let S be a nonempty set of integers that has a lower bound. That is, there is an
integer b such that b < n foralln € S. If b > 0, then § is actually a set of natural
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numbers, so it contains a smallest element by the well-ordering principle. If b < 0,
then adding |b| to each integer in S produces a new set T of natural numbers, since
n+|b| = Oforalln € S. The set T must contain a smallest element, say ¢, and
it is easy to see that ¢ — || is the smallest element of S. This allows us to use, if
necessary, a somewhat stronger version of the well-ordering principle: every set of
integers that is bounded below contains a smallest element.

The first application of the well-ordering principle will be to prove the division
algorithm. In familiar terms, the division algorithm states that dividing an integer a
by a positive integer b gives a quotient ¢ and nonnegative remainder r, such that »
is less than . You could write this as

a r

=917y
but since we are studying properties of the set of integers, we will avoid fractions
and write this equation in the form

a=>bg+r.
For example, if a = 29 and b = §, then
20 =8.3+35,

so the quotient g is 3 and the remainder r is 5. You must be careful when a is a
negative number, since the remainder must be nonnegative. Simply changing signs
in the previous equation, we have

—-29'= (8)(=3) + (-3),
which does not give an appropriate remainder. Rewriting this in the form
=29 = (8)(—4)+3

gives the correct quotient ¢ = —4 and remainder » = 3.
Solving for r in the equation a = bg +r shows that r = a — bg, and that » must

be the smallest nonnegative integer that can be written in this form, since 0 < r < b.
This observation clarifies the relationship between the quotient and remainder, and
forms the basis of our proof that the division algorithm can be deduced from the
well-ordering principle. Another way to see this relationship is to notice that you
could find the remainder and quotient by repeatedly subtracting b from ¢ and noting
that you have the remainder in the required form when you obtain a nonnegative
integer less than b.

- The next theorem on “long division with remainder” has traditionally been called
the “division algorithm”.
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1.1.3 Theorem (Division Algorithm). For any integers a and b, with b > 0, there
exist unique integers q (the quotient) and r (the remainder) such that

a=bg+r,withd<r<b.

Proof. Consider the set R = {a — bg : g € Z}. The elements of R are the
potential remainders, and among these we need to find the smallest nonnegative
one. We want to apply the well-ordering principle to the set R of nonnegative
integers in R, so we must first show that RT is nonempty. Since b > 1, the number
a — b(—|a)) = a + b - |a| is nonnegative and belongs to R™, so RT is nonempty.

Now by the well-ordering principle, R has a smallest element, and we will -
call this element r. We will show thata = bg +r, with0 < r andr < b. By
definition, r > 0, and since r € R™, we must have r = a — bg for some integer
g. We cannot have r > b, since if we let s = r — b we would have s > 0 and
s =a—b(g+1) € R*. Since s < r, this would contradict the way r was defined,
and therefore we must have r < b. We have now proved the existence of r and g
satisfying the conditions ¢ = bg +r and 0 <r < b.

To show that g and r are unique, suppose that we can also write a = bp + s
for integers p and s withO < s < b. Wehave 0 <r < band 0 < s < b, and this
implies that |s — r| < b. Butbp +s = bg +r and so s —r = b(q — p), which
shows that b | (s — r). The only way that b can be a divisor of a number with smaller
absolute value is if that number is 0, and so we musthave s —r = 0, ors = r. Then
bp = bq, which implies that p = ¢ since b > 0. Thus the quotient and remainder
are unique, and we have completed the proof of the theorem. 0O

Given integers a and b, with b > 0, we can use the division algorithm to write
a = bg +r,with0 < r < b. Since bla if and only if there exists g € Z such
that a = bgq, we see that bla if and only if r = 0. This simple observation gives
us a useful tool in doing number theoretic proofs. To show that b |a we can use the
division algorithm to write a = bg + r and then show that r = 0. This technique
makes its first appearance in the proof of Theorem 1.1.4.

A set of multiples aZ has the property that the sum or difference of two integers
in the set is again in the set, since ag; + ag, = a(g; &= g2). We say that the set aZ
is closed under addition and subtraction. This will prove to be a very important
property in our later work. The next theorem shows that this property characterizes
sets of multiples, since a nonempty set of integers is closed under addition and
subtraction if and only if it is a set of the form aZ, for some nonnegative integer a.

1.1.4 Theorem. Let I be a nonempty set of integers that is closed under addition
and subtraction. Then I either consists of zevo alone or else contains a smaliest
positive element, in which case I consists of all multiples of its smallest positive
element.
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Proof. Since I is nonempty, either it consists of 0 alone, or else it contains a nonzero
integer a. In the first case we are done. In the second case, if I contains the nonzero
integer a, then it must contain the difference a —a = 0, and hence the difference
0 — a = —a, since I is assumed to be closed under subtraction. Now either a or
—a is positive, so I contains at Jeast one positive integer. Having shown that the set
of positive integers in / is nonempty, we can apply the well-ordering principle to
guarantee that it contains a smallest member, say b.

Next we want to show that I is equal to the set bZ. of all multiples of b. To show
that I = bZ., we will first show that bZ C I, and then show that I C bZ.

Any nonzero multiple of b is given by just adding b (or —b) to itself a finite
number of times, so since I is closed under addition, it must contain all multiples
of b. Thus bZ C 1.

On the other hand, to show that I € bZ we must take any element ¢ in I and
show that it is a multiple of b, or equivalently, that bl c. (Now comes the one crucial
idea in the proof.) Using the division algorithm we can write ¢ = bg + r, for
some integers g and r with 0 <7 < b. Since I contains bg and is closed under
subtraction, it must also containr = ¢ — bq. Butthisisa contradiction unlessr = 0,
because b was chosen to be the smallest positive integer in 1 and yet » < b by the
division algorithm. We conclude that r = 0, and therefore ¢ = bg, so blc and we
have shown that I C bZ.

This completes the proof that 7 = bZ4. U

One of the main goals of Chapter 1 is to develop some properties of prime num-
bers, which we will doin Section 1.2. Before discussing prime numbers themselves,
we will introduce the notion of relatively prime numbers, and this definition in turn
depends on the notion of the greatest common divisor of two numbers. Our defini-
tion of the greatest common divisor is given in terms of divisibility, rather than in
terms of size, since it is this form that is most useful in writing proofs. Exercise 20
gives an equivalent formulation that focuses on size.

1.1.5 Definition. Let a and b be integers, not both zero. A positive integer d is
called the greatest common divisor ofaand b if

(i) d is a divisor of both a and b, and
(ii) any divisor of both a and b is also a divisor of d.
The greatest common divisor of a and b will be denoted by gcd(a, b) or (a, b).

Our first observation is that ged (0, 0) is undefined, butif @ is any nonzero integer,
then ged(a, 0) is defined and equal to |a]. The definition of the greatest common
divisor can be shortened by using our notation for divisors. If a and b are integers,
not both zero, and d is a positive integer, thend = gcd(a, b) it

(i) dlaanddlb, and
(i) if cla and c 1 b, then cld.
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The fact that we have written down a definition of the greatest common divisor
does not guarantee that there is such a number. Furthermore, the use of the word
“the” has to be justified, since it implies that there can be only one greatest common
divisor. The next theorem will guarantee the existence of the greatest common
divisor, and the question of uniqueness is easily answered: if d; and d, are greatest
common divisors of a and b, then the definition requires that d; | dy and d5 1d;, so
dy = d,. Since both d; and d, are positive, we have d; = ds.

If a and b are integers, then we will refer to any integer of the form ma + nb,
where m, n € Z, as a linear combination of ¢ and b. The next theorem gives a
very useful connection between greatest common divisors and linear combinations.

1.1.6 Theorem. Lera and b be integers, not both zero. Then a and b have a greatest
common divisor, which can be expressed as the smallest positive linear combination

of a and b. “
Moreover, an integer is a linear combination of a and b if and only if it is a

multiple of their greatest common divisor.
Proof. Let I be the set of all linear combinations of g and b, that is,
I={x€Z|x=ma+nb forsome m,n € Z}.

The set 7 is nonempty since it containsa = 1-¢4+0-bandb=0-a+1-b. Itis
closed under addition and subtraction since if ky, k» € I, then k; = ma + n1b and
ks = maa + nyb for some integers m1, my, ny, ny. Thus

ki £ ky = (mia +mb) & (mea + nab) = (my mo)a + (n; £ny)b

also belong to I. By Theorem 1.1.4, the set I consists of all multiples of the smallest
positive integer it contains, say d. Since d € I, d = ma + nb for some integers m
and 7.

Since we already know that d is positive, to show that d = (a, ) we must show
that 1) dla and d b and (ii) if cla and ¢ 1b, then ¢ | d. First, d is a divisor of every
elementin I,sodlaandd|bsincea, b € I. Secondly, if claand clb, say a = cq;
and b = cg,, then

d =ma +nb =m(cqy) +ncq) = c(mqy +nga) ,

which shows that ¢ld.
The second assertion follows from the fact that 7, the set of all linear combina-
tions of @ and b, is equal to dZ, the set of all multiples of 4. O

You are probably used to finding the greatest common divisor of @ and b by first
finding their prime factorizations. This is an effective technique for small numbers,
but we must postpone a discussion of this method until after we have studied prime
factorizations in Section 1.2. In practice, for large numbers it can be very difficult
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to find prime factors, whereas the greatest common divisor can be found in many
fewer steps by using the method we discuss next.

The greatest common divisor of two numbers can be computed by using a
procedure known as the Euclidean algorithm. (Our proof of the existence of the
greatest common divisor did not include an explicit method for finding it.) Before
discussing the Buclidean algorithm, we need to note some properties of the greatest
common divisor. First, if @ and b are not both zero, then it is not difficult to see that
gced(a, b) = ged(Jal, |b|). Furthermore, if b > 0 and bla, then (a, b) = b.

The next observation provides the basis for the Euclidean algorithm. If b # 0
and a = bg + r, then (a, b) = (b, r). This can be shown by noting first that a is
a multiple of (b, ) since it is a linear combination of b and r. Then (b, 7)1 (a, b)
since b is also a multiple of (b, r). A similar argument using the equality r = a —bgq
shows that (a, b) | (b, r), and it follows that (a, b) = (b, r).

Given integers a > b > 0, the Euclidean algorithm uses the division algorithm
repeatedly to obtain

a = bg+n with 0 < rnp < b
b = rg+n with 0 < rn < n
ry = rngz+r with 0 < 3 < m
etc.
If r; = 0O, then bla, and so (a,b) = b. Since r; > r; > ..., the remainders

get smaller and smaller, and after a finite number of steps we obtain a remainder
rne1 = 0. The algorithm ends with the equation

Fp—1 = rnqne1 + 0.
This gives us the greatest common divisor:

(a,b) =(b,r) =(ri,r) = ... = (ra—1,7a) = (", O) =10 .

Example 1.1.1,

In showing that (24, 18) = 6, we have (24, 18) = (18, 6) since 24 = 18.-14-6,
and (18, 6) = 6 since 6118. Thus (24, 18) = (18,6) =6. O

Example 1.1.2.

To show that (126, 35) = 7, we first have (126, 35) = (35, 21) since 126 =
35.34+21. Then (35,21) = (21, 14) since 35 = 21- 1+ 14, and (21, 14) =
(14,7) since 21 = 14 - 1 + 7. Finally, (14,7) = 7 since 14 = 7 - 2. Thus
(126,35 =(35,2D) =2L, 14 =(014,7)=7. O




10 CHAPTER 1. INTEGERS

Example 1.1.3.

In finding (83, 38), we can arrange the work in the following manner:

83 = 38.247 (83,38) = (38,7)

38 = 7-543 38,7 = (1,3
7 = 3.24+1 7.3 = GD
3 = 3.1 ' 3, = 1.

If you only need to find the greatest common divisor, stop as soon as you
can compute it in your head. In showing that (83, 38) = 1, note that since 7
has no positive divisors except 1 and 7 and is not a divisor of 38, it is clear
immediately that (38,7) =1. O

Example 1.1.4.

Sometimes it is necessary to find the linear combination of @ and b that gives
(a, b). Infinding (126, 35) in Example 1.1.2 we had the following equations:

a = bg1+n 126 = 35.3421
b = rigp+n 35 = 21-1414
ri = rgs-t+d 21 = 14-147
r, = dga+0 14 = 7-240.

The pext step is to solve for the nonzero remainder in each of the equations
(omitting the last equation):

rn = a4+ (—qb 21 = 1-1264+(-3)-35
rp = b+ (—gan 14 = 1-354+(-1)-21
d = ri+(—g3)r 7 = 1-214+(-1-14.

We then work with the last equation d = r; + (—g3)r, which contains the
greatest common divisor, as desired, but may not be a linear combination of
the original integers a and b. We can obtain the desired linear combination by
substituting for the intermediate remainders, one at a time. Our first equation
is

7 = 1.214+(=1)-14.

We next substitute for the previous remainder 14, using the equation 14 =
1-35+ (=1) - 21. This gives the following €quation, involving a linear
combination of 35 and 21:

7 = 1.-214+(=1)-[1-35+(=1)-21]
= (=1)-354+2-21.
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Finally, we use the first equation 21 = 1- 126 4 (—3) - 35 to substitute for the
remainder 21. This allows us to represent the greatest common divisor 7 as a
linear combination of 126 and 35:

7 = (=1)-354+2-[1-126 + (=3) - 35]
2126+ (—=7) -35. O

The technique introduced in the previous example can easily be extended to the
general situation in which it is desired to express (a, b) as a linear combination of o
and b. After solving for the remainder in each of the relevant equations, we obtain

ri = a+(—qb

rn = b+ (—gr
r3 = ri+(—g3r
ra = rp+(—qars

At each step, the expression for the remainder depends upon the previous two re-
mainders. By substituting into the successive equations and then rearranging terms,
it is possible to express each remainder (in turn) as a linear combination of g and b.
The final step is to express (g, b) as a linear combination of @ and b.

The Euclidean algorithm can be put into a convenient matrix format that keeps
track of the remainders and linear combinations at the same time. To find (g, b),
the idea is to start with the following system of equations:

x = a
y = b

and find, by using elementary row operations, an equivalent system of the following

form:
mix + my = (a,b)
myx + nyy = 0

1 0 a
01 5}’

we use the division algorithm to write @ = bg; + 1. We then subtract ¢; times the
bottom row from the top row, to get

I —q1 nt
0 1 b )

Beginning with the matrix
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We next write b = r1g2 + 12, and subtract g2 times the top row from the bottom row.
This gives the matrix
[ 1 —-q1 N
—qp 1+qiq2 n

and it can be checked that this algorithm produces rows in the matrix that give each
successive remainder, together with the coefficients of the appropriate linear combi-
nation of ¢ and b. The procedure is continued until one of the entries in the right-hand
column is zero. Then the other entry in this column is the greatest common divisor,
and its row contains the coefficients of the desired linear combination.

Example 1.1.5.

In using the matrix form of the Euclidean algorithm to compute (126, 35)“
we begin with the equations x = 126 and y = 35. We have the following

matrices:
1 0 126 1 -3 21 1 -3 21
0 1 35 0 1 35 —1 4 14
2 =7 7 2 =7 7
—1 4 14 -5 18 0 |’

ending with the equations 2x —7y = 7 and —5x+18y = 0. Thus (126, 35) =
7, and substituting x = 126 and y = 35 in the equation 2x — 7y =7 gives us
a linear combination 7 =2 - 126 + (=7) - 35.

Substituting into the second equation —5x + 8ly = 0 also gives us some
interesting information. Any multiple of the linear combination 0 = (—5) -
126 -+ 18- 35 can be added to the above representation of the greatest common
divisor. Thus, for example, we also have 7 = (=3)-126 4+ 11 -35 and
7=(-8)-126+29-35. O

Example 1.1.6.

In matrix form, the solution for (83, 38) is the following:

1083M1—27M 1~27«/>
0 1 38 0 1 38 -5 11 3.

11 -24 1 o~ 11 -24 1
-5 11 3 -38 83 0 |-

Thus (83,38) = 1and (11)(83) + (=24 (38) =1. U
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The number (a, b) can be written in many different ways as a linear combination
of a and b. The matrix method gives a linear combination with 0 = ma + n1b, so
if (a, b) = ma + nb, then adding the previous equation gives (a, b) = (m +m)a -+
(n + np)b. In fact, any multiple of the equation 0 = mja + n1b could have been
added, so there are infinitely many linear combinations of ¢ and b that give (a, b).

EXERCISES: SECTION 1.1

Before working on the exercises, you must make sure that you are familiar with all of
the definitions and theorems of this section. You also need to be familiar with the techniques
of proof that have been used in the theorems and examples in the text. As a reminder, we
take this opportunity to list several useful approaches.

—When working questions involving divisibility you may find it useful to go back to
the definition. If you rewrite bla as a = bq for some ¢ € Z, then you have an equation
involving integers, something concrete and familiar to work with.

—To show that & 1a, try to write down an expression for a thathas b as a factor.

—Another approach to proving that b | a is to use the division algorithm to write a =
bg + r, where 0 < r < b, and show that r = 0.

—Theorem 1.1.6 is extremely useful in questions involving greatest common divisors.
Remember that finding some linear combination of a and b is not necessarily good enough
to determine ged(a, b). You must show that the linear combination you believe is equal to
ged(a, b) is actually the smallest positive linear combination of a and b.

Exercises for which a solution is given in the answer key are marked by the symbol 7.

1. A number # is called perfect if it is equal to the sum of its proper positive divisors
(those divisors different from »). The first perfect number is 6 since 1 +2 +3 = 6.
For each number between 6 and the next perfect number, make a list containing the
number, its proper divisors, and their sum.

Note: If you reach 40, you have missed the next perfect number.

2. Find the quotient and remainder when a is divided by b.
(a)a=99, b=17
®ya=-9, b=17
©a=17, b=99
(da=-1017, b=99
3. Use the Euclidean algorithm to find the following greatest common divisors.
() (35, 14)
(b) (15,11)
T(c) (252, 180)
(d) (513, 187)
t(e) (7655, 1001)
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4. Use the Buclidean algorithm to find the following greatest common divisors.

(a) (6643, 2873)
(b) (7684, 4148)
(c) (26460, 12600)
(d) (6540, 1206)
(e) (12091, 8439)

5.1 For each part of Exercise 3, find integers m and n such that (a, b) is expressed in the

10.
11.
12.
13.
14.
15.

16.

17.

18.

form ma + nb.

For each part of Exercise 4, find integers m and n such that (g, b) is expressed in the
form ma + nb.

Let a, b, ¢ be integers. Give a proof fot these facts about divisors:
(a)If bla, then b lac. :
(b)Y Ifblaand clb, thencla.

(©) If cla and ¢ b, then ¢ | (ma + nb) for any integers m, n.

Let a, b, ¢ be integers such that a + b + ¢ = 0. Show that if  is an integer which is
a divisor of two of the three integers, then it is also a divisor of the third.

Let a, b, ¢ be integers.
(a) Show thatif bla and bl (a +¢), then blc.
(b) Show thatif bla and b fc,thend [ (a + ).

Let a, b, ¢ be integers, with ¢ % 0. Show that be lacifand only if bla.
Show thatif ¢ > 0, then (ab, ac) = a(b, ¢).

Show that if # is any integer, then (10n + 3, 5n +2) = 1.

Show that if # is any integer, then (@ + nb, b) = (a, b).

For what positive integers z is it true that (n, n +2) = 2? Prove your claim.

Give a detailed proof of the statement in the text that if a and b are integers, thenbla
if and only if aZ C bZ.

Let g, b, ¢ be integers, with b > 0,¢ > 0, and let g be the quotient and r the
remainder when a is divided by b.

(a) Show that g is the quotient and rc¢ is the remainder when ac is divided by bc.
(b) Show that if ¢’ is the quotient when g is divided by c, then g’ is the quotient when
a is divided by be. (Do not assume that the remainders are Z€er0.)

Let a, b, n be integers with n > 1. Suppose that a = ngy + 71 with0 <r; <nand
b =ngy + ry with0 <ry < n. Prove thatnl(a — b) if and only if ry = 7.

Show that any nonempty set of integers that is closed under subtraction must also be
closed under addition. (Thus part of the hypothesis of Theorem 1.1.4 is redundant.)
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19. Leta, b, g, r be integers such that b # 0 and a = bg + r. Prove that (a, D) = (b, 1)
by showing that (b, r) satisfies the definition of the greatest common divisor of a and
b.

20. Perhaps a more natural definition of the greatest common divisor is the following:
Let a and b be integers, not both zero. An integer d is called the greatest common
divisor of the nonzero integers a and b if (i) d1a and d b, and (i) cla and ¢ b
implies d > ¢. Show that this definition is equivalent to Definition 1.1.5.

21. Prove that the sum of the cubes of any three consecutive positive integers is divisible
by 3.

22 4Find all integers x such that 3x + 7 is divisible by 11.

23. Develop a theory of integer solutions x, y of equations of the form ax + by = ¢,
where a, b, ¢ are integers. That is, when can an equation of this form be solved,
and if it can be solved, how can all solutions be found? Test your theory on these
equations:

60x +36y =12, 35x+6y=28, 12x+ 18y =11.

Finally, give conditions on a and b under which ax + by = ¢ has solutions for every
integer c.

24. Formulate a definition of the greatest common divisor of three integers a, b, ¢ (not
all zero). With the appropriate definition you should be able to prove that the greatest
common divisor is a linear combination of a, b and c.

1.2 Primes

The main focus of this section is on prime numbers. Our method will be to investigate
the notion of two integers which are relatively prime, that is, those which have no
common divisors except 1. Using some facts which we will prove about them,
we will be able to prove the prime factorization theorem, which states that every
nonzero integer can be expressed as a product of primes. Finally, we will be able
to use prime factorizations to Jearn more about greatest common divisors and least
common multiples.

1.2.1 Definition. The nonzero integers a and b are said to be relatively prime if
(a,b)=1.

1.2.2 Proposition. Let a, b be nonzero integers. Then (a, b) = 1 if and only if there
-exist integers m, n such that ma + nb = 1.
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Proof. If a and b are relatively prime, then by Theorem 1.1.6 integers m and n can
be found for which ma +nb = 1. To prove the converse, we only need to note that if
there exist integers m and n with ma +nb = 1, then 1 must be the smallest positive
linear combination of a and b, and thus (g, b) = 1, again by Theorem 1.1.6. O

Proposition 1.2.2 will be used repeatedly in the proof of the next result. A
word of caution—it is often tempting to jump from the equation d = ma + nb to
the conclusion that d = (a, b). For example, 16 = 2 -5+ 3 - 2, but obviously
(5,2) # 16. The most that it is possible to say (using Theorem 1.1.6) is that d is a
multiple of (a, b). Of course, if ma + nb = 1, then Proposition 1.2.2 implies that
(a, b) = 1. :

1.2.3 Propeosition. Let a, b, c be integers, where a # 0 orb # 0.
(a) If blac, thenbl(a, b) - c.
®) Ifblac and (a,b) = 1, then blc.
() Ifbla, claand (b,c) =1, then bcla.
(@ (a,bc) =1ifand only if (a,b) = land (a,c) = 1.

Proof. (a) Assume that blac. To show that bl(a, b) - ¢, we will try to find an
expression for (a, b)-c thathas b as an obvious factor. We can write (a, b) = ma-+nb
for some m, n € Z, and then multiplying by ¢ gives

(a,b) - c =mac + nbc.

Now b is certainly a factor of nbc, and by assumption it is also a factor of ac, so it
is a factor of mac and therefore of the sum mac + nbc. Thus bl(a, b) - c.

(b) Simply letting (a, b) = 1 in part (a) gives the result immediately.

(c)If bla, thena = bq for some integer g. If cla, thenclbg,soif (b, ¢) = 1,1t
follows from part (b) that ¢ ¢, say with ¢ = cg;. Substituting for g in the equation
a = bqg gives a = bcgy, and thus bela.

(d) Suppose that (@, bc) = 1. Then ma + n(bc) = 1 for some integers m and
n, and by viewing this equation as ma + (nc)b = 1 and ma -+ (nb)c = 1 we can
see that (¢, p) = land (g,c) = 1.

Conversely, suppose that (a,b) = 1 and (a,¢) = 1. Then mia +nib = 1
for some integers m; and ny, and mya + nyc = 1 for some integers m, and ns.
Multiplying these two equations gives

(mimaa -+ mynsc + manib)a + (mny)be =1,

which shows that (a, bc) = 1. O

1.2.4 Definition. An integer p > 1 is called a prime number if its only divisors are
+1 and +p. An integer a > 1 is called composite if it is not prime.
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To determine whether or not a given integer n, > 1 is prime, we could just
try to divide n by each positive integer less than #. This method of trial division
is very inefficient, and for this reason various sophisticated methods of “primality
testing” have been developed. The need for efficient tests has become particularly
apparent recently, because of applications to computer security that make use of
cryptographic algorithms. To determine the complete list of all primes up to some
bound, there is a useful procedure handed down from antiquity.

Example 1.2.1 (Sieve of Eratosthenes).

The primes less than a fixed positive integer a can be found by the following
procedure. List all positive integers less than a (except 1), and cross off every
even number except 2. Then go to the first number that has not been crossed
off, which will be 3, and cross off all higher multiples of 3. Continue this
process to find all primes less than a. You can stop after you have crossed
off all proper multiples of primes p for which p < ./a, since you will have
crossed off every number less than a that has a proper factor. (If bis composite,
say b = bib;, then either by < /b or by < /by For example, we can find
all primes less than 20 by just crossing off all multiples of 2 and 3, since

5 > +/20:

2 3 4 5 6 7 % 9 W
11 12 13 14 15 16 17 18 19

This method is attributed to the Greek mathematician Eratosthenes, and is
called the sieve of Eratosthenes.

.Similarly, the integers less than a and relatively prime to a can be found by
crossing off the prime factors of ¢ and all of their multiples. For example, the
prime divisors of 36 are 2 and 3, and so the positive integers less than 36 and
relatively prime to it can be found as follows:

1 2 3 4 5 ¢ 7 8§ 9 1 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 . O

Euclid’s lemma, the next step in our development of the fundamental theorem
of arithmetic, is the one that requires our work on relatively prime numbers. We
will use Proposition 1.2.3 (b) in a crucial way.

1.2.5 Lemma (Euclid). An integer p > 1 is prime if and only if it satisfies the
following property: for all integers a and b, if p\ab, then either pla or plb.

Proof. Suppose that p is prime and plab. We know that either (p,a) = p or
(p,a) = 1, since (p, a) is always a divisor of p and p is prime. In the first
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case pla and we are done. In the second case, since (p,a) = 1, we can apply
Proposition 1.2.3 (b) to show that p|ab implies p|b. Thus we have shown that if
plab, then either pla or plb.

- Conversely, suppose that p satisfies that given condition. If p were composite,
then we could write p = ab for some positive integers smaller than p. The condition
would imply that either pla or p|b, which would be an obvious contradiction. [

The following corollary extends Euclid’s lemma to the product of more than
two integers. In the proof we will use mathematical induction, which we hope is
familiar to you. If you do not remember how to use induction, you should read the
discussion in Appendix A.4.

1.2.6 Corollary. If p is a prime number, and playay - - - a, for integers ai, a, .. .,
ay, then pla; for some i withl <i <n. '

Proof. In order to use the principle of mathematical induction, let P, be the follow-
ing statement: if plaja, - - - @y, then pla; for some 1 <i < n. The statement P, is
clearly true. Next, assume that the statement Py is true, thatis, if plajas - - - 4, then
pla;forsomel <i <k.Ifplajay---ararq, forintegersay, as, . . ., ax, ax41, then
applying Euclid’s lemma to a = aya; - - - gy and b = a4 yields that plaja; - - -
or plagy1. Incase plaja - - - ay, the truth of the statement P, implies that p [ a; for
some 1 < i < k. Thus, in either case, pla; forsome 1 < i < k+ 1, and hence
the statement Py, is true. By the principle of mathematical induction (as stated in
Theorem A.4.2 of Appendix A.4), the statement P, holds for all positive integers
n. O

The next theorem, on prime factorization, is sometimes called the fundamental
theorem of arithmetic. The naive way to prove that an integer @ can be written as
a product of primes is to note that either a is prime and we are done, or else a is
composite, say a = bc. Then the same argument can be applied to b and ¢, and
continued until & has been broken up into a product of primes. (This process must
stop after a finite number of steps because of the well-ordering principle.) We also
need to prove that any two factorizations of a number are in reality the same. The
idea of the proof is to use Euclid’s lemma to pair the primes in one factorization with
those in the other. In fact, the proof of the uniqueness of the factorization requires
a more delicate argument than the proof of the existence of the factorization.

1.2.7 Theorem (Fundamental Theorem of Arithmetic). Any infegera > 1 can
be factored uniquely as a product of prime numbers, in the form

o1 o2

a=pi'py e py s

where py < py < ... < p, and the exponents o1, oy, . .. , &, are all positive.
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Proof. Suppose that there is some integer that cannot be written as a product of
primes. Then the set of all integers @ > 1 that have no prime factorization must be
nonempty, so as a consequence of the well-ordering principle it must have a smallest
member, say b. Now b cannot itself be a prime number since then it would have
a prime factorization. Thus b is composite, and we can write b = cd for positive
integers c, d that are smaller than b. Since b was assumed to be the smallest positive
integer not having a factorization into primes, and ¢ and d are smaller, then both ¢
and d must have factorizations into products of primes. This shows that b also has
such a factorization, which is a contradiction. Since multiplication is commutative,
the prime factors can be ordered in the desired manner.

If there exists an integer > 1 for which the factorization is not unique, then

by the well-ordering principle there exists a smallest such integer, say a. Assume -

that a has two factorizations a = p}'py*--- p% and a = qf ! qu .. gb", where

pr<pr<...<ppandq <g <...< gm, witho; > Ofori =1,...,n,and
B > 0fori =1,...,m. By Corollary 1.2.6 of Euclid’s lemma, g | py for some k
with 1 < k < n and p; lg; for some j with 1 < j < m. Since all of the numbers
p; and g; are prime, we must have g1 = pg and p; = g;. Then p; = qi since
g1 <g;=p1=pr=4q1 Hence we can let

a a —1 -1
S:—-z——:p‘i‘1 pgzn~pg":qfl q2'32--~qfl"’.
Pt 41

If s = 1 then a = p; has a unique factorization, contrary to the choice of a. If
s > 1, then since s < a and s has two factorizations, we again have a contradiction
to the choice of a. O

If the prime factorization of an integer is known, then it is easy to list all of

its divisors. If a = p{'py?--- p%, then b is a divisor of a if and only if b =

pf ! pz’g2 ... pP where B; < o for all i. Thus we can list all possible divisors of a
by systematically decreasing the exponents of each of its prime divisors.

Example 1.2.2.

The positive divisors of 12 are 1,2,3,4,6,12; the positive divisors of & are
1,2, 4,8; and the positive divisors of 36 are 1,2, 3, 4, 6,9,12,18,36. In
Figure 1.2.1, we have arranged the divisors so as to show the divisibility
relations among them. There is a path (moving upward only) from a to b if
and only if a1 b.

In constructing the first diagram in Figure 1.2.1, it is easiest to use the prime

factorization of 12. Since 12 = 223 we first divide 12 by 2 to get 6 and then
- divide again by 2 to get 3. This gives the first side of the diagram, and to

construct the opposite side of the diagram we divide each number by 3.
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If the number has three different prime factors, then we would need a three-
dimensional diagram. (Visualize the factors as if on the edges of a box.) With
more than three distinct prime factors, the diagrams lose their clarity. 0O

Figure 1.2.1:
12 8 /36\
57 s Jl / N / \
N | \ / \ a
N S 2
! i N

The following proof, although easy to follow, is an excellent example of the
austere beauty of mathematics.

1.2.8 Theorem (Euclid). There exist infinitely many prime numbers.

Proof. Suppose that there were only finitely many prime numbers, say pi, pa,

., Pn. Then consider the number a = pip>--- p, + 1. By Theorem 1.2.7, the
number a has a prime divisor, say p. Now p must be one of the primes we listed,
so pl(pip2--- pa), and since pla, it follows that pl(a — p1p2--- pn). Thisis a
contradiction since p cannot be a divisorof 1. O

Example 1.2.3.

Consider the numbers 22 — 1 =3,2> -1 =7,24 —1=15,2" -1 = 31,
and 2% — 1 = 63. The prime exponents each give rise to a prime, while the
composite exponents each give a composite number. Is this true in general?
Continuing to investigate prime exponents gives 271 = 127, whichis prime,
but 21 — 1 = 2047 = 23 - 89. Thus a prime exponent may or may not yield
a prime number.

On the other hand, it is always true that a composite exponent yields a com-

posite number. To prove this, let n be composite, say n = gm (where g and

m are integers greater than 1), and consider 2" — 1 = 297 — 1. We need to

find a nontrivial factorization of 29" — 1 = (29)™ — 1. We can look at this as
m _ 1, and then we have the familiar factorization

1= (= DE 2D
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Substituting x = 27 shows that 27 — 1isafactorof 2" —1. Now 1 <29—1 <
2% — 1 since both ¢ and m are greater than 1, and so we have found a nontrivial
factorizationof 2" — 1. O

The final concept we study in this section is the least common multiple of two
integers. Its definition is parallel to that of the greatest common divisor. We can
characterize it in terms of the prime factorizations of the two numbers, or by the
fact that the product of two numbers is equal to the product of their least common
multiple and greatest common divisor.

1.2.9 Definition. A positive integer m is called the least common multiple of the
nonzero integers a and b if

(i) m is a multiple of both a and b, and

(i) any multiple of both a and b is also a multiple of m.

We will use the notation lemla, b] or [a, b] for the least common multiple of a and
b.

When written out in symbols, the definition of the least common multiple looks
like this: m = Icm[a, b]if () alm and blm, and (i) if alc and blc, thenm | c.

There are times, as in next proposition, when it is convenient to allow the prime
factorization of a number to include primes with exponent 0. This leads to a repre-
sentation that is no longer unique, but it is particularly useful to be able to write the
prime factorizations of two different integers in terms of the same primes.

1.2.10 Proposition. Let a and b be positive integers with prime factorizations a=
pi'py - pynandb = pf1p§2 ... pPr where a; > 0 and B; > 0 for all i.

@) Thenalb ifandonly ifo; < Bi for1=1,2,...,n.

(b) For each i, let 8; = min{ey, B;} and u; = max{c;, B;}. Then

hyfa

ged(a,b) = pip2 ... p¥ and lemla, bl = p}'py> - pi.

Proof. (a) Suppose that o; < p; fori = 1,2,...,n. Lety, = Bi — «, for
i=1,2,...,nandsetc = pl'p}*---pi" (note that y; > Ofori =1,2,...,n).
Then

_ o) o) oy V1 V2 Y b o SRR o
ac = D Dy PPy Dy Py = Py P ’

.. pgn’f‘)’n

Since b = ac, we have a l b.
Conversely, suppose that a|b. Then there exists ¢ € Z such that b = ac. For
any prime p such that p | ¢, wehave p b, and so p = p; for some j withl < j <n.
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Thus ¢ has a factorization ¢ = p]'p}*---py, where y; > Ofori = 1,2,...,n.
Since b = ac, we have
N — n no— + + n n
p,lglp§2”'pf _p(lxlpgz”.pz: pi/lpgz---p;/ __ptlxl legZ Vzn_pg e
where f; = a; + y; fori = 1,2,...,n. Because y; > 0, we have o; < f; for

i=1,2,...,n
(b) The proof follows immediately from part (a) and the definitions of the least
common multiple and greatest common divisor. U

As a corollary of Proposition 1.2.10, it is clear that
ged(a, b) - lemla, bl = ab .

This can also be shown directly from the definitions, as we have noted in Exercise 15.

For small numbers it is probably easiest to use their prime factorizations to find
their greatest common divisor and least common multiple. It takes a great deal of
work to find the prime factors of a large number, even on a computer making use of
sophisticated algorithms. In contrast, the Euclidean algorithm is much faster, so its
use is more efficient for finding the greatest common divisor of large numbers.

Example 1.2.4.

In the previous section we computed (126, 35). To do this using Proposi-
tion 1.2.10 we need the factorizations 126 = 2! - 32 7! and 35 = 5' - 71,
We then add terms so that we have the same primes in each case, to get
126 = 2! .32.50.7  and 35 = 20.3%. 51 . 71, Thus we obtain (126, 35) =
20.30.50 .71 =7 and [126,35] =2!-3%2.5. 71 = 630. O

EXERCISES: SECTION 1.2

When proving results in these exercises, we recommend that you first try to use Propo-
sition 1.2.2, Proposition 1.2.3, or Lemma 1.2.5, before trying to use the very powerful
Fundamental Theorem of Arithmetic.

1. Find the prime factorizations of each of the following numbers, and use them to
compute the greatest common divisor and least common multiple of the given pairs
of numbers.

() 35, 14
(b) 15, 11

$(c) 252, 180
(d) 7684, 4148

+(e) 6643, 2873
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2.

Use the sieve of Eratosthenes to find all prime numbers less than 200.

3.1 For each composite number a, with 4 < a < 20, find all positive numbers less than

4.

a that are relatively prime to a.

Find all positive integers less than 60 and relatively prime to 60.

Hint: Usé techniques similar to the sieve of Eratosthenes.

5.1 For each of the numbers 9, 15, 20, 24 and 100, give a diagram of all divisors of the

6.

10.
11.

12.

13.
14.
15.

16.

17.

- 18.

number, showing the divisibility relationships. (See Example 1.2.2.)

For each of the following numbers, give a diagram of all divisors of the number,
showing the divisibility relationships.

(a) 60

(b) 1575

Let m and n be positive integers such that m + n = 57 and [m, n] = 680. Find m
and n.

. Let a, b be positive integers, and let d = {(a, b). Since dla and d|b, there exist

integers £, k such that a = dh and b = dk. Show that (h, k) = 1.

Leta, b, ¢ be positive integers, and let d = (a, b). Since d | a, there exists an integer
h with a = dh. Show thatifa lbc, then A lc.

Show that aZ N bZ = [a, b]Z.

Let a, b be nonzero integers, and let p be a prime. Show thatif p | [a, b], then either
plaorplb,

Let a, b, ¢ be nonzero integers. Show that (g, b) = 1 and (a, ¢) = 1 if and only if
(a,[b,c]) =1. “

Let a, b be nonzero integers. Prove that (a, b) = 1 if and only if (@ + b, ab) = 1.
Let a, b be nonzero integers with (a, b) = 1. Compute (a + b, a — b).

Let a and b be positive integers, and let m be an integer such that ab = m(a, b).
Without using the prime factorization theorem, prove that (a, b)[a, b] = ab by
verifying that m satisfies the necessary properties of [a, b].

A positive integer g is called a square if ¢ = n? for some n € Z. Show that the
integer @ > 1 is a square if and only if every exponent in its prime factorization is
even.

Show that if the positive integer « is not a square, then a # b?/c? for integers b, c.
Thus any positive integer that is not a square must have an irrational square root.
Hint: Use Exercise 16 to show that ac? # b2.

Show that if a, b are positive integers such that (g, b) = 1 and ab is a square, then a
and b are also squares.
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19.

20.

21.
22.
23.
24,
25.
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Let p and ¢ be prime numbers. Prove that pg + 1 is a square if and only if p and ¢
are twin primes.

A positive integer is called square-free if it is a product of distinct primes. Prove
that every positive integer can be written uniquely as a product of a square and a
square-free integer. ‘

Prove that if ¢ > 1, then there is a prime p witha < p <al+1.

Show that for any n > 0, there are n consecutive composite numbers.

Show that if 7 is a positive integer such that 2% + 1 is prime, then 7 is a power of 2.
Show that log 2/ log 3 is not a rational number.

If a, b, ¢ are positive integers such that a? + b2 = (2, then (g, b, ¢) is called a
Pythagorean triple. For example, (3, 4, 5) and (5, 12, 13) are Pythagorean triples.
Assume that (a, b, ¢) is a Pythagorean triple in which the only common divisors of
a,b,care +1.

(a) Show that g and » cannot both be odd.

(b) Assume that a is even. Show that there exist relatively prime integers m and n
such that @ = 2mn, b = m? — n?, and ¢ = m? + n?.

Hint: Factor a2 = ¢% — b? after showing that (c +b,c—b) =2.

Congruences

For many problems involving integers, all of the relevant information is contained in
the remainders obtained by dividing by some fixed integer n. Since only » different
remainders are possible (0, 1, ...,n — 1), having only a finite number of cases to
deal with can lead to considerable simplifications. For small values of 7 it even
becomes feasible to use trial-and-error methods.

Example 1.3.1.

A famous theorem of Lagrange states that every positive integer can be written
as sum of four squares. (See the notes at the end of this chapter for a short
discussion of this problem.) To illustrate the use of remainders in solving
a number theoretic problem, we will show that any positive integer whose
remainder is 7 when divided by 8 cannot be written as the sum of three squares.
Therefore this theorem of Lagrange is as sharp as possible.

Ifn =a2+ b2+ cz, then when both sides are divided by 8, the remainders
must be the same. It will follow from Proposition 1.3.3 that we can compute
the remainder of nn = a? 4 b* + ¢? by adding the remainders of a2, b2, and ¢?
(and subtracting a multiple of 8 if necessary). By the same proposition, we can
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compute the remainders of a2, b2, and ¢? by squaring the remainders of a, b,
and ¢ (and subtracting a multiple of 8 if necessary). The possible remainders
fora,b,and care0, 1, ..., 7, and squaring and taking remainders yields only
the values 0, 1, and 4. To check the possible remainders for a% + b+ 2
we only need to add together three such terms. (If we get a sum larger than
7 we subtract 8.) A careful analysis of all of the cases shows that we cannot
obtain 7 as a remainder for a® + b2 4 ¢2. Thus we cannot express any integer
1 whose remainder is 7 when divided by 8 in the form n = a2 + 5% +¢* O

Trial and error techniques similar to those of Example 1.3.1 can sometimes be
used to show that a polynomial equation has no integer solution. For example, if x =
¢is a solution of the equation apx* 4. . Aajx+ao = 0, then apcf+. . +ajctaomust
be divisible by every integer n. If some n canbe found for which agx*+. . .+ai1x+ao
is never divisible by #, then this can be used to prove that the equation has no integer
solutions. For example, x> + x + 1 = 0 has no integer solutions since A4ec+lis
odd for all integers ¢, and thus is never divisible by 2.

A more familiar situation in which we carry out arithmetic after dividing by
a fixed integer is the addition of hours on a clock (where the fixed integer is 12).
Another example is given by the familiar rules “even plus even is even,” “even
times even is even,” etc., which are useful in other circumstances (where the fixed
integer is 2). Gauss introduced the following congruence notation, which simplifies

computations of this sort.

1.3.1 Definition. Let n be a positive integer. Integers a and b are said to be congru-
ent modulo n if they have the same remainder when divided by n. This is denoted
by writing a = b (mod n).

If we use the division algorithm to write @ = ng +r, where 0 < r < n,thenr =
n-0-+r. It follows immediately from the previous definition thata =7 (mod n). In
particular, any integer is congruent modulo 7 to one of the integers 0, 1, 2, ..., n—1.

We feel that the definition we have given provides the best intuitive understand-
ing of the notion of congruence, but in almost all proofs it will be easiest to use the
characterization given by the next proposition. Using this characterization makes it
possible to utilize the facts about divisibility that we have developed in the preceding
sections of this chapter.

1.3.2 Proposition. Let a, b, and n > 0 be integers. Then a = b (mod n) if and
only ifnl(a — b).

Proof. If a = b (mod n), then a and b have the same remainder when divided by
n, so the division algorithm gives a = nq) +r and b = ngs + 7. Solving for the
common remainder gives a —ng; = b —ngy. Thusa —b = n(g; — ¢2), and so
nl{a—b).
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To prove the converse, assume that nl(a — b). Then there exists £ € Z with
a —b = nk, and hence b = a —nk. If upon applying the division algorithm we have
a = ng+r,withQ <r < n,thenb = a—nk = (ng+r)—nk = n(g—k)+r. Since
0 < r < n, division of b by n also yields the remainder r. Hencea = b (mod n). O

When working with congruence modulo 7, the integer 7 is called the modulus.
By the preceding proposition, ¢ = b (mod ) if and only if a — b = nqg for some
integer g. We can write this in the form @ = b + ng, for some integer g. This
observation gives a very useful method of replacing a congruence with an equation .
(over Z). On the other hand, Proposition 1.3.3 shows that any equation can be
converted to a congruence modulo 7 by simply changing the = sign to =. In doing
so, any term congruent to 0 can simply be omitted. Thus the equation a = b + ng
would be converted back to a = b (mod n). .

Congruence behaves in many ways like equality. The following properties,
which are obvious from the definition of congruence modulo 7, are a case in point.
Let a, b, ¢ be integers. Then

(i) a = a (mod n);

(ii) if a = b (mod n), then b = a (mod n);

(iii) if @ = b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).

The following theorem carries this analogy even further. Perhaps its most impor-
tant consequence is that when adding, subtracting, or multiplying congruences you

may substitute any congruent integer. For example, to show that 99% =1 (mod 100),
it is easier to substitute —1 for 99 and just show that (—1)? = 1.

1.3.3 Proposition. Letn > 0 be an integer. Then the following conditions hold for
all integers a, b, c,d:

(@) Ifa = ¢ (mod n) and b = d (mod n), thena £ b = c £ d (mod n), and
ab = cd (mod n). )

®) Ifa +c = a+d (mod n), then ¢ = d (mod n). If ac = ad (mod n) and
(a,n) =1, then ¢ = d (mod n).

Proof. (a)Ifa = ¢ (mod n) and b = d (mod n), then nl(a — ¢) and nl (b — d).
Adding shows that n 1 ((a + b) — (¢ + d)), and subtracting shows thatn((a —b) —
(c —d)). Thusa £ b = c £+ d (mod n). —

Sincen | (a—c), wehaven|(ab—cb), andsincen | (b—d), wehavenl(cb—cd).
Adding shows that n | (ab — cd) and thus ab = cd (mod n).

O Ifa+c=a-+d (modn), thennl((a+c)—(a+d)). Thusnl(c—d)and
so ¢ = d (mod n). :

If ac = ad (mod n), then nl(ac — ad), and since (n, a) = 1, it follows from
Proposition 1.2.3 (b) that nl(c —d). Thus ¢ = d (mod n). U

The consequences of Proposition 1.3.3 can be summarized as follows.
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(i) For any number in the congruence, you can substitute any congruent integer.

(ii) You can add or subtract the same integer on both sides of a congruence.

(iii) You can multiply both sides of a congruence by the same integer.

(iv) Canceling, or dividing both sides of a congruence by the same integer, must
be done very carefully. You may divide both sides of a congruence by an integer a
only if (a, n) = 1. For example, 30 = 6 (mod 8), but dividing both sides by 6 gives
5 =1 (mod 8), which is certainly false. On the other hand, since 3 is relatively
prime to 8, we may divide both sides by 3 to get 10 = 2 (mod 8).

Proposition 1.3.3 shows that the remainder upon division by n of a+ b or ab can
be found by adding or multiplying the remainders of a and b when divided by » and
then dividing by » again if necessary. For example, if n = 8, then 101 has remainder
5 and 142 has remainder 6 when divided by 8. Thus 101 - 142 = 14, 342 has the
same remainder as 30 (namely, 6) when divided by 8. Formally, 101 = 5 (mod 8)
and 142 = 6 (mod 8), so it follows that 101 - 142 =5 -6 = 6 (mod 8).

As a further example, we compute the powers of 2 modulo 7. Rather than
computing each power and then dividing by 7, we reduce modulo 7 at each stage of
the computations:

2% =4 (mod 7),

22=22=4.2=1(mod7),
22=22=1.-2=2(mod 7),
2°=24=2-2=4(mod 7).

From the way in which we have done the computations, it is clear that the powers
will repeat. In fact, since there are only finitely many remainders modulo n, the
powers of any integer will eventually begin repeating modulo 7.

1.3.4 Proposition. Let a and n > 1 be integers. There exists an integer b such that
ab =1 (mod n) if and only if (a, n) = 1.

Proof. If there exists an integer b such that ¢b = 1 (mod n), then we have
ab = 1+ gn for some integer g. This can be rewritten to give a linear combination
of a and n equal to 1, and so (a,n) = 1. :

Conversely, if (a, n) = 1, then there exist integers s, ¢ such that sa + tn = 1.
Letting b = s and reducing the equation to a congruence modulo n gives ab =
1 (modn). O

We are now ready to present a systematic study of linear congruences that involve
unknowns. The previous proposition shows that the congruence

ax =1 (mod »n)
has a solutionif and only if (a, n) = 1. In fact, the proof of the proposition shows that

the solution can be obtained by using the Euclidean algorithm to write 1 = ab+ng
for some b, g € Z, since then 1 = ab (mod n).
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The next theorem determines all solutions of a linear congruence of the form
ax = b (mod n) .

Of course, if the numbers involved are small, it may be simplest just to use trial
and error. For example, to solve 3x = 2 (mod 5), we only need to substitute
x =0,1, 2,3, 4. Thus by trial and error we can find the solution x = 4 (mod 5).

In many ways, solving congruences is like solving equations. There are a few
important differences, however. A linear equation over the integers (an equation
of the form ax = b, where a # 0) has at most one solution. On the other hand,
the linear congruence 2x = 2 (mod 4) has the two solutions x = 1 (mod 4) and
x =3 (mod 4).

For linear equations, it may happen that there is no solution. The same is true
for linear congruences. For example, trial and error shows that the congruence
3x = 2 (mod 6) has no solution. Thus the first step in solving a linear congruence
is to use the theorem to determine whether or not a solution exists. .

We say that two solutions r and s to the congruence ax = b (mod n) are
distinct solutions medulo » if r and s are not congruent modulo »n. Thus in the
next theorem the statement “d distinct solutions modulo n” means that there are d
solutions sy, 82, . .., sg such that if  # j, then s; and s; are not congruent modulo
n. This terminology is necessary in order to understand what we mean by “solving”
the congruence ax = b (mod n). In the next section, we will introduce the concept
of a “congruence class” to clarify the situation.

1.3.5 Theorem. Leta, b andn > 1 be integers. The congruence ax = b (mod n)
has a solution if and only if b is divisible by d, where d = (a, n). If d | b, then there
are d distinct solutions modulo n, and these solutions are congruent modulo n/d.

Proof. To prove the first statement, observe that ax = b (mod #) has a solution
if and only if there exist integers s and ¢ such that as = b + ng, or, equivalently,
as + (—g)n = b. Thus there is a solution if and only if b can be expressed as a
linear combination of @ and n. By Theorem 1.1.6 the linear combinations of a and
n are precisely the multiples of d, so there is a solution if and only if 4 1 5.

To prove the second statement, assume that d 15, and let m = n/d. Suppose
that x; and x, are solutions of the congruence ax = b (mod n), giving ax; =
ax; (mod n). Then nla(x; — x3), and so it follows from Proposition 1.2.3 (a) that
nld(x; — x). Thus m|(x; — x2), and so x; = x, (mod m). On the other hand, if
x1 = X (mod m), then m|(x; — x3), and so nld(x; — x,) since n = dm. Then
since d |a we can conclude that nla(x; — x;), and so ax; = ax, (mod n).

We can choose the distinct solutions from among the n remainders 0, 1, . . ., n—1.
Given one such solution, we can find all others in the set by adding multiples of
n/d, giving a total of 4 distinct solutions. O




1.3. CONGRUENCES 29

We now describe an algorithm for solving linear congruences of the form
ax = b (mod n) .

We first compute d = (a,n), and if d1b, then we write the congruence ax =
b (mod n) as an equation ax = b +gn. Since d is a common divisor of , b, and n,
we can write @ = day, b = db;, and n = dm. Thus we get a;x = b; +qm, which
yields the congruence

a;x = by (mod m) ,

where a1 = a/d, by = b/d,andm =n/d.

It follows immediately from Proposition 1.2.10 that since d = (a, n), the num-
bers a; and m must be relatively prime. Thus by Proposition 1.3.4 we can apply the
Euclidean algorithm to find an integer ¢ such that ca; = 1 (mod m). Multiplying
both sides of the congruence a,x = by (mod m) by ¢ gives the solution

x = cby (mod m) .

Finally, since the original congruence was given modulo n, we should give
our answer modulo 7 instead of modulo m. The congruence x = cb; (mod m)
can be converted to the equation x = cby + mk, which yields the solution x =
chy +mk (mod n). The solution modulo m determines d distinct solutions modulo
n. The solutions have the form sy + km, where sp is any particular solution of
x = bic (mod m) and k is any integer.

Example 1.3.2 (Homogeneous linear congruences).

In this example we consider the special case of a linear homogeneous congru-
ence
ax =0 (mod n) .

In this case there always exists a solution, namely x = 0 (mod n), but this
may not be the only solution modulo #.

As the first step in the solution we obtain a;x = 0 (mod n1), where a =
day and n = dny. Since g1 and ny are relatively prime, by part (b) of
Proposition 1.3.3 we can cancel a1, to obtain

n

sz(modnl), Withnlzm.

We have d distinct solutions modulo 7.

For example, 28x = 0 (mod 48) reduces to x = 0 (mod 12),and x =0, 12,
24, 26 are the four distinct solutions modulo 48. O
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Example 1.3.3.

To solve the congruence
60x = 90 (mod 105) ,

we first note that {60, 105) = 15, and then check that 15190, so that there will
indeed be a solution. Dividing the corresponding equation 60x = 90 + 105g
by 15, we obtain the equation 4x = 6 4 7g, which reduces to the congruence

4x =6 (mod 7) .

To solve this congruence, we need an integer ¢ with ¢4 = 1 (mod 7), soin
effect we must solve another congruence, 4z = 1 (mod 7). We could use the ..
Fuclidean algorithm, but with such a small modulus, trial and error is quicker,
and it is easy to see that ¢ = 2 will work.

We now multiply both sides of the congruence 4x = 6 (mod 7) by 2, to obtain
8x = 12 (mod 7), which reduces to

x=5(mod7).

Writing the solution in the form of an equation, we have x = 5 + 7%, so
x = 5+ 7k (mod 105). By adding multiples of 7 to the particular solution
xp = 5, we obtain the solutions ..., —2, 5,12, 19, ... . There are 15 distinct
solutions modulo 105, so we have

=5,12, 19,26, 33,40,47,54, 61, 68,75, 82, 89, 96, 103 (mod 105) . O

In the next theorem we show how to solve two simultaneous congruences over
moduli that are relatively prime. The motivation for the proof of the next theorem
is as follows. Assume that the congruences x = a (mod »n) and x = b (mod m) are
given. If we can find integers y and z with

y =1 (mod n) y = 0 (mod m)

z =0 (mod n). z =1 (mod m)

then x = ay -+ bz will be a solution to the pair of simultaneous congruences x =
a (mod n) and x = b (mod m). This can be seen by reducing modulo » and then
modulo m.
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1.3.6 Theorem (Chinese Remainder Theorem). Let n and m be positive integers,
with (n, m) = 1. Then the system of congruences

x = a (mod n) x = b (mod m)
has a solution. Moreover, any two solutions are congruent modulo mn.

Proof. Since (n,m) = 1, there exist integers r and s such that rm -+ sn = 1.
Then rm = 1 (mod n) and sn = 1 (mod m). Following the suggestion in the
preceding paragraph, we let x = arm + bsn. Then a direct computation verifies
that x = arm = a (mod rn) and x = bsn = b (mod m).

If x is a solution, then adding any multiple of mn is obviously still a solution.
Conversely, if x; and x, are two solutions of the given system of congruences, then
they must be congruent modulo » and modulo m. Thus x; — x;, is divisible by
both n and m, so it is divisible by mn since by assumption (n, m) = 1. Therefore
X1 = X (mod mn) |

Example 1.3.4.

The proof of Theorem 1.3.6 actually shows how to solve the given system of
congruences. For example, if we wish to solve the system

x =7 (mod 8) x =3 (mod 5)

we first use the Euclidean algorithm to write 2-8 -3 .5 = 1. Thenx =
7(=3)(5) + 3(2)(8) = —57 is a solution, and the general solution is x =
" —57 + 40t. The smallest nonnegative solution is therefore 23, so we have

x =23 (mod 40) . O
Another proof of the existence of a solution in Theorem 1.3.6 can be given as

follows. In some respects this method of solution is more intuitive and provides a
convenient algorithm for solving the congruences. Given the congruences

x =a (modrn) x = b (mod m)

we can rewrite the first congruence as an equation in the form x = a + gn for some
g € Z. To find a simultaneous solution, we only need to substitute this expression
for x in the second congruence, giving a + gn = b (mod m), or

gn=>b —a (mod m) .

.Since (n, m) = 1, we can solve the congruence nz = 1 (mod m), and using this
solution we can solve for g in the congruence gn = b — a (mod m).
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Recall that we converted the first congruence x = a (mod m) to the equation
x = a + gn. Now that we have a value for ¢, we can substitute, and so this gives
the simultaneous solutions to the two congruences in the form x = a + gn. We
can choose as a particular solution the smallest positive integer in this form. The
general solution is obtained by adding multiples of mn.

Example 1.3.5.

To illustrate the second method of solution, again consider the system
x =7 (mod 8) x =3 (mod5).

The first congruence gives us the equation x = 7+-8¢, and then substituting we
obtain 7 + 8¢ = 3 (mod 5), or equivalently, 3¢ = —4 (mod 5). Multiplying
by 2,since 2-3 = 1 (mod 5), gives g = —8 (mod 5) org = 2 (mod 5). This
yields the particular solutionx =7+2-8=23. O

EXERCISES: SECTION 1.3

1. Solve the following congruences.
t(@4x =1 (mod7)
(b)2x =1 (mod 9)
T(c) 5x = 1 (mod 32)
(d) 19x = 1 (mod 36)

2. Write n as a sum of four squares for 1 <n < 20.

3. Solve the following congruences.
t(a) 10x = 5 (mod 21)
(b) 10x = 5 (mod 15)
T(c) 10x = 4 (mod 15)
(d) 10x = 4 (mod 14)
4. Solve the following congruence. . 20x = 12 (mod 72)
5.7 Solve the following congruence. 25x = 45 (mod 60)

6. Find all integers x such that 3x + 7 is divisible by 11.

(New techniques ate available for this problem, which was Exercise 22 in Section 1.1)
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7. The smallest positive solution of the congruence ax = 0 (mod n) is called the
additive order of ¢ modulo n. Find the additive orders of each of the following’
elements, by solving the appropriate congraences.

+(a) 8 modulo 12
(b) 7 modulo 12
1(c) 21 modulo 28

(d) 12 modulo 18

8. Prove that if p is a prime number and a is any integer such that p [ a, then the
additive order of @ modulo p is equal to p.

9. Prove thatifn > 1 and a > O are integers and d = (a, n), then the additive order of
a modulo n isn/d.

10. Let a, b, n be positive integers. Prove that if a = b (mod n), then (a, n) = (b, n).

11. Show that 7 is a divisor of (6! + 1), 11 is a divisor of (10! 4- 1), and 19 is a divisor
of (18! + 1).

12. Show that 4 - (n®> + 1) is never divisible by 11.

13. Prove that the sum of the cubes of any three consecutive positive integers is divisible
by 9. (Compare Exercise 21 of Section 1.1.)

14. Find the units digit of 3%° + 1112 + 15.

Hint: Choose an appropriate modulus 7, and then reduce modulo 7.

15. Solve the following congruences by frial and error.
+(a) x2 = 1 (mod 16)
() x3 = 1 (mod 16)
1) x* = 1 (mod 16)
(d) x8 = 1 (mod 16)
16. Solve the following congruences by trial and error.
(a) x> +2x + 2 = 0 (mod 5)
® x*+ x>+ x2+x+1=0(mod2)
(¢) x* + x3 + 2% +2x = 0 (mod 3)

17. List and solve all quadratic congruences modulo 3. That is, list and solve all con-
gruences of the form ax? + bx + ¢ = 0 (mod 3). The only coefficients you need to
consider are 0, 1, 2.

18. Solve the following system of congruences.

x = 15 (mod 27) x = 16 (mod 20)
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19.1 Solve the following system of congruences.

20.

21.

22.

23.

24.

25.
26.

27.

28.

x = 11 (mod 16) x = 18 (mod 25)

Solve the following system of congruences.

2x = 5 (mod 7) 3x = 4 (mod 8)

Hint: First reduce to the usual form.

Solve the following system of congruences.

x = a (mod n) x=b(modn+1)

Extend the techniques of the Chinese remainder theorem to solve the following system
of congruences. h

2x = 3 (mod 7) x =4 (mod 6) 5x = 50 (mnod 55)

This exercise extends the Chinese remainder theorem. Let m, n be positive integers,
with (m, n) = d and [m, n] = k. Prove that the system of congruences

x = a (mod n) x = b (mod m)

has a solution if and only if @ = b (mod d), and in this case any two solutions are
congruent modulo k.

(Casting out nines) Show that the remainder of an integer n when divided by 9 is the
same as the remainder of the sum of its digits when divided by 9.

Hint: For example, 7862 = 7 + 8 + 6 + 2 (mod 9). How you can use the digits of
7862 to express it in terms of powers of 107

Note: “Casting out nines” is a traditional method for checking a sum of along column
of large numbers by reducing each of the numbers modulo 9 and checking the sum
modulo 9. This exercise shows that the method is practical, because it provides a
quick algorithm for reducing an integer modulo 9.

Find a result similar to casting out nines for the integer 11.

Let p be a prime number and let a, b be any integers. Prove that

(a +b)f =a” +b? (mod p) .
Prove that in any Pythagorean triple (a, b, ¢), either a or b is divisible by 3, and one
of a, b, c is divisible by 5.

Prove that there exist infinitely many prime numbers of the form 4m + 3 (where m
is an integer).
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1.4 Integers Modulo n

In working with congruences, we have established that in computations involving
addition, subtraction, and multiplication, we can consider congruent numbers to be
interchangeable. In this section we will formalize this point of view. We will now
consider entire congruence classes as individual entities, and we will work with
these entities much as we do with ordinary numbers. The point of introducing the
notation given below is to allow us to use our experience with ordinary numbers as
a guide to working with congruence classes. Most of the laws of integer arithmetic
hold for the arithmetic of congruence classes. The notable exception is that the
product of two nonzero congruence classes may be zero.

1.4.1 Definition. Let a andn > 0 be integers. The set of all integers which have the
same remainder as a when divided by n is called the congruence class of a modulo
n, and is denoted by [a},, where

lal, ={x € Z | x=a (modn)}.

The collection of all congruence classes modulo n is called the set of integers
modulo n, denoted by Z,,.

Note that [a], = [b], if and only if ¢ = b (mod n). When the modulus is
clearly understood from the context, the subscript n can be omitted and [a], can be
written simply as [a].

A given congruence class can be denoted in many ways. For example, x =
5 {(mod 3) if and only if x = 8 (mod 3), since 5 = 8 (mod 3). This shows
that [5]; = [8]s. We sometimes say that an element of {a], is a representative
of the congruence class. Each congruence class [a], has a unique nonnegative
representative that is smaller than #, namely, the remainder when a is divided by
n. This shows that there are exactly » distinct congruence classes modulo n. For
example, the congruence classes modulo 3 can be represented by 0, 1, and 2.

[0]3 = {"'7 _—99 _6; _3, 0, 3, 6, 9, ...}
[ = {..,-8,-5-2,1,47,10,...}
[2]3 = {"-9—'75 —4;_‘1’2,5, 8,11,...}
Each integer belongs to exactly one congruence class modulo 3, since the remainder

on division by 3 is unique. In general, each integer belongs to a unique congruence
class modulo n. Hence we have

Zn = {[O]m [1]ns ] [n - 1]71} .

The set Z, consists of [0], and [1],, where [0}, is the set of even numbers and
[1]5 is the set of odd numbers. With the new notation, the familiar rules
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“even + even = even,”  “odd + even=o0dd,”  “odd + odd = even”
can be expressed as
[0], + [0]> = [0, [11; + [0 = [1]2, (1] + [1} = [0]2.
Similarly,
“even x even =even,’ “even x odd =even,” “odd x odd = odd”
can be expressed as
[0]z - [0], = [0]2, [0l - [1]2 = [0z, (1} -1k =11

These rules can be summarized by giving an addition table and a multiplication
table (Table 1.4.1).

Table 1.4.1: Addition and Multiplication in Z»

+ | [0] [1] - | 101 [
[01101 [11 [01 ] 101 [0]
11| 11 ol (11| [01 [1]

To use the addition table, select an element a from the first column, and an
element b from the top row. Read from left to right in the row to which a belongs,
until reaching the column to which b belongs. The corresponding entry in the table
is a + b. In this table, as we will sometimes do elsewhere, we have simplified our
notation for congruence classes by omitting the subscript in [a],.

A similar addition and multiplication can be introduced in Z,, for any n. Given
congruence classes in Z,, we add (or multiply) them by picking representatives
of each congruence class. We then add (or multiply) the representatives, and find
the congruence class to which the result belongs. This can be written formally as
follows.

Addition: lal, + [b]. = [a + b,
Multiplication: [al, - [P], = lab],
In Z4,, for example, we have [8]1» = [20];2 and [10];; = [34];,. Adding

congruence classes gives the same answer, no matter which representatives we use:
[8112 + [10112 = [18]1» = [6]12 and also [20]12 + [34]12 = [54]12 = [6]12.
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1.4.2 Proposition. Let n be a positive integer, and let a, b be any integers. Then the
addition and multiplication of congruence classes given below are well-defined:

[al, + 6], = [a + 5], , [al, - (6], = [ab]s .

Proof. We must show that the given formulas do not depend on the integers a and
b which have been chosen to represent the congruence classes with which we are
concerned. Suppose that x and y are any other representatives of the congruence
classes [a], and [b],, respectively. Thenx =g (modn)andy = b (mod n), and
so we can apply Proposition 1.3.3. It follows from that proposition that x + y =
a + b (mod n) and xy = ab (mod n), and thus we have [x], + [y]l, = [a + bl,
and [x], - [y]l, = [abl,. Since the formulas we have given do not depend on
the particular representatives chosen, we say that addition and multiplication are
“well-defined” O

The familiar rules for addition and multiplication carry over from the addition
and multiplication of integers. A complete discussion of these rules will be given
in Chapter 5, when we study ring theory. If [a],, [b], € Z, and [a], + 6], = (0],
then [b], is called an additive inverse of [a],. By Proposition 1.3.3 (b), additive
inverses are unique. We will denote the additive inverse of [a], by —[al,. It is easy
to see that —[a], is in fact equal to [—al,, since [al, + [—al, = [a —a], = [01,.

For any elements [a],, [b]n, [c], in Z,, the following laws hold.

Associativity: ([als + [b]n) + [cln = [aln + ([Bn + [c]n)
(lal, - [B1n) - [cln = [aln - ([B)n - [c]n)

Commutativity: | [al, +1bl. = [bl, + lal,

lal, - [Pln = [D], - aln
Distn'butivity: [als - ([b]s + [c]n) = [al - [D]n + [aln - [c]n
Identities: [al, + [0], = [al»

lals - [1]n = [ala
Additive inverses: lal, +[—al. = [0],

We will give a proof of the distributive law and leave the proofs of the remaining
properties as an exercise. If a, b, ¢ € Z, then

lal, - (Il + [cln) = lals- b+cl) = [ab+o)]a
= [ab+acl, = [abl, + [acl,
= [a]n : [b]n + [a]n : [C]n .
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The steps in the proof depend on the definitions of addition and multiplication and
the equality a(b + ¢) = ab + ac, which is the distributive law for Z.

In doing computations in Z,,, the one point at which particular care must be taken
is the cancellation law, which no longer holds in general. Otherwise, in almost all
cases your experience with integer arithmetic can be trusted when working with
congruence classes. A quick computation shows that [6]s - [S]s = [6]g - [1]g, but
[5]s # [1]s. It can also happen that the product of nonzero classes is equal to zero.
For example, [6]g - [4]s = [0]s.

1.4.3 Definition. If [al, belongs to Z,, and [al,[b], = [0, for some nonzero
congruence class [bl,, then [a), is called a divisor of zero.

If [a], is not a divisor of zero, then in the equation [al,[b], = [al.lc]l, we
may cancel [al,, to get [b], = [c],. To see this, if [al,[b], = [al.lcl., then
[al.([b], — [c],) = [al.[b — c], = [0],, and so [b], — [c], must be zero since [a],
is not a divisor of zero. This shows that [»], = [c],.

1.4.4 Definition. If [a], belongs to Z,, and [al,[b], = [1],, for some congruence
class [bl,, then [b], is called a multiplicative inverse of [al, and is denoted by
[al; .

In this case, we say that [al, is an invertible element of Z,,, or a unit of Z,.

The next proposition (which is just a restatement of Proposition 1.3.4) shows
that a has a multiplicative inverse modulo » if and only if (a,n) = 1. Whena
satisfies this condition, it follows from Proposition 1.3.3 (b) that any two solutions
to ax = 1 (mod n) are congruent modulo n, and so we are justified in referring to
the multiplicative inverse of [a],, whenever it exists.

In Z, each nonzero congruence class contains representatives which are rela-
tively prime to 7, and so each nonzero congruence class has a multiplicative inverse.
We can list them as [1];1 = [117, [217" = [417, [3];" =[5}, and [6];" = [6];.
We did not need to list [4]; U and [517 U since, in general, if [al 1 = [b],, then
[b];! = [aln.

From this point on, if the meaning is clear from the context we will omit the
subscript on congruence classes. Using this convention in Z,, we note that if [a]
has a multiplicative inverse, then it cannot be a divisor of zero, since [a][b] = [0]
implies [6] = [a]™ ([a][b]) = [a]'[0] = [0].

1.4.5 Propeosition. Let n be a positive integer.

(a) The congruence class [al, has a multiplicative inverse in Z, if and only if
{a,n) = L.

(b) A nonzero element of 7., either has a multiplicative inverse or is a divisor of
zero.
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Proof. (a) If [a] has a multiplicative inverse, say [a]__1 = [b], then [a][b] = [1].
Therefore ab = 1 (mod r), which implies that ab = 1 + gn for some integer g.
Thus ab + (—g)n = 1,and so (@, n) = 1.

Conversely, if (@, n) = 1, then there exist integers b and g such that ab+gn = 1.
Reducing modulo n shows that ab = 1 (mod n), and so [b] = [a]™%.

(b) Assume that a represents a nonzero congruence class, so that n fa. If
(a,n) = 1, then [a] has a multiplicative inverse. If not, then (a,n) = d, where
1 < d < n. In this case, since d In and d | a, we can find integers k,bwithn = kd
and a = bd. Then [k] is a nonzero element of Z,, but

la]lk] = [ak] = [bdk] = [bn] = [O],

which shows that [a] is a divisor of zero. U

1.4.6 Corollary. The following conditions on the modulus n > 0 are equivalent.
(1) The number n is prime.
(2) Z,, has no divisors of zero, except [0],.
(3) Every nonzero element of Z, has a multiplicative inverse.

Proof. Since n is prime if and only if every positive integer less than » is relatively
prime to n, Corollary 1.4.6 follows from Proposition 1.4.5. O

The proof of Proposition 1.4.5 (a) shows thatif (a, n) = 1, thenthe multiplicative
inverse of [a] can be computed by using the Euclidean algorithm.

Example 1.4.1.

For example, to find [1117! in Z1¢ using the matrix form of the Euclidean
algorithm (see the discussion preceding Example 1.1.5) we have the following

computation:
10 16 | 1 -1 5 -
0 1 11 0 1 11

1 -1 5 - 11 -16 0
-2 31 -2 3 1 )

Thus 16(~2) + 11 - 3 = 1, which shows that 1 1]1—61 = [3]is6.

When the numbers are small, as in this case, it is often easier to use trial
and error. The positive integers less than 16 and relatively prime to 16 are
1,3,5,7,9,11, 13, 15. Tt is easier to use the representatives &1, 3, &5, &7
since if [a][b] = [1], then [—al[—b] = [1], and so [~a] ™! = —[a]™!. Now
we observe that 3.5 = 15 = —1 (mod 16), so 3(—5) = 1 (mod 16). Thus
[3]1'61 = [-5]16 = [11]16 and [—3]1“61 = [5]16. Finally, 7-7 = 1 (mod 16),
s0 [717¢ = [The and [-7]3g = [Tl = Olis. D
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Another way to find the inverse of an element [a] € Z, is to take successive
powers of [a]. If (a,n) = 1, then [¢] is not a zero divisor, and so no power of
[a] can be zero. We let [a]® = [1]. The set of powers [1], [a], [a]?, [a]®, ... must
contain fewer than n distinct elements, so after some point there must be a repetition.
Suppose that the first repetition occurs for the exponent m, say [a]” = [al*, with
k < m. Then [a]"* = [a]® = [1] since we can cancel [a] from both sides a total of
k times. This shows that for the first repetition we must have had k = 0, so actually
[a]™ = [1]. From this we can see that [a]~! = [a]" .

Example 1.4.2.

To ﬁnd{11]1_61,wecanlistthepowers of [11]16. Wehave[11]> = [-5]% = [9],
[111% = [1113[11] = [99] = [3], and [11]* = [11*[11] = [33] = [1]. Thus
again we see that [11]'1'61 =[3l1s. O

We are now ready to continue our study of equations in Z,,. A linear congruence
of the form ax = b (mod n) can be viewed as a linear equation [al,[x], = [b],
in Z,. If [a], has a multiplicative inverse, then there is a unique congruence class
[x], = lal; 1[b], that is the solution to the equation. Without the notation for
congruence classes we would need to modify the statement regarding uniqueness to
say that if xg is a solution of ax = b (mod n), then so is xg + gn, for any integer g.

It is considerably harder to solve nonlinear congruences of the form apx* +
.+ aix +ag = 0 (mod n), where ai,...,ap € Z. It can be shown that in
solving congruences modulo n of degree greater than or equal to 1, the problem
reduces to solving congruences modulo p* for the prime factors of n. This question
is usually addressed in a course on elementary number theory, where the Chinese
remainder theorem is used to show how to determine the solutions modulo a prime
power p® (for integers o > 2) from the solutions modulo p. Then to determine the
solutions modulo p we can proceed by trial and error, simply substituting each of
0,1,..., p — 1 into the congruence. Fermat’s theorem (Corollary 1.4.12) can be
used to reduce the problem to considering polynomials of degree at most p — 1.

We will prove this theorem of Fermat as a special case of a more general theorem
due to Buler. Another proof will also be given in Section 3.2, which takes advantage
of the concepts we will have developed by then. The statement of Euler’s theorem
involves a function of paramount importance in number theory and algebra, which
we now introduce.

1.4.7 Definition. Let n be a positive integer. The number of positive integers less
than or equal to n which are relatively prime to n will be denoted by ¢(n). This
function is called Euler’s g-function, or the totient function.
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In Section 1.2 we gave a procedure for listing the positive integers less than n
and relatively prime to n. However, in many cases we only need to determine the
numerical value of ¢(n), without actually listing the numbers themselves. With the
formula in Proposition 1.4.8, ¢(n) can be given in terms of the prime factorization
of n. Note that (1) = 1.

o] o

1.4.8 Proposition. If the prime factorization of n is n = py P,
o > 0for1 <i <k, then

ms(i-2)(-2) (-3

Proof. See Exercises 17, 29, and 30. A proof of this result will also be presented
in Section 3.5. 0O

2... pt, where

Example 1.4.3.

Using the formula in Proposition 1.4.8, we have
(10) = 10 1 (4 4 d (36) =36 L) (2 12. 0
= — — = 11 = - — ot .
¢ 2)\5 : ¢ 2)\3

1.4.9 Definition. The set of units of Z.,, the congruence classes [a] suchthat(a, n) =
1, will be denoted by Z..; .

1.4.10 Proposition. The set Z) of units of Zy, is closed under multiplication.

Proof. This can be shown either by using Proposition 1.2.3 (d) or by using the
formula ([a][p]) ™" = [p]7'[a]™. O

The number of elements of Z¥ is given by ¢(n). The next theorem should be
viewed as a result on powers of elements in Z,7, although it is phrased in the more
familiar congruence notation.

1.4.11 Theorem (Euler). If (a,n) = 1, then a*® =1 (mod n).

Proof. In the set Z,, there are ¢(n) congruence classes which are represented
by an integer relatively prime to n. Let these representatives be {a1, ..., dpm)}-
For the given integer a, consider the congruence classes represented by the products
{aai, ..., aa,m}. By Proposition 1.3.3 (b) these are all distinct because (a, n) = 1.
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Since each of the products is still relatively prime to 7, we must have arepresentative
from each of the ¢(n) congruence classes we started with. Therefore

aan - Gy = (aa)(aar) - - - (@Gpm) = a*Pajay - - “ Gy (mod n).

Since the product a; - - - Gy i8 relatively prime to n, we can cancel it in the con-

gruence
ajdy - Qe = a®Paya, - “dy(m (mod n),

and so we have a?™ =1 (mod n). O

1.4.12 Corollary (Fermat). If p is a prime number, then for any integer a we have
a? = a (mod p).

Proof. If pla, then trivially a? = a =0 (mod p). If p fa, then (a, p) = 1 and
Euler’s theorem gives a*® = 1 (mod p). Then since ¢(p) = p — 1, we have
a? =a (mod p). O

Tt is instructive to include another proof of Fermat’s “little” theorem, one that
does not depend on Euler’s theorem. Expanding (a + b)? we obtain

p(p—1)
1.2

For k # 0, k # p, each of the coefficients

(@ +b)f =a? +pa” b+ aP?p? + ...+ pab” ! + P

pl
K(p— R

is an integer and has p as a factor, since p is a divisor of the numerator but not the
denominator. Therefore

(a + b)? = a? +b? (mod p) .

Using induction, this can be extended to more terms, giving (a + b+ ¢)? = af +
b? + cP (mod p), etc. Writinga as (1 +1+...-+ 1) shows that

a? =(1+14+...+DP=1"+...+17 =a (mod p).

As a final remark we note that if (a, n) = 1, then the multiplicative inverse of
[a], can be given explicitly as [@]?®™~1, since by Euler’s theorem, 4 - a*®-1 =
1 (mod n). Note also that for a given n the exponent ¢(n) in Euler’s theorem may
not be the smallest exponent possible. For example, in Zg the integers +1, +3, are
relatively prime to 8, and Fuler’s theorem states that a* = 1 (mod 8) for each of
these integers. In fact, a® = 1 (mod 8) for a = £1, &3.




1.4.

1.

2.

3.

10.
11.

INTEGERS MODULO N 43

EXERCISES: SECTION 14

Make addition and multiplication tables for the following sets.
(a) Z3
(b) Z4
T(0) Z12
Make multiplication tables for the following sets.
(@) Zs
(b) Z7
(©Zg
Find the multiplicative inverses of the given elements (1f possible).
T(a) [14]in Z15
(b) [38] in Zg3
() [351] in Zegeo
(d) [91} in Zos65
Let a and b be integers.
(a) Prove that [a], = [b], if and only if a = b (mod n).
(b) Prove that either [a], N [b], = 0 or [a], = [bl,.
Prove that each congruence class [a], in Z, has a unique representative r that satisfies
O0<r<n.

Let m and » be positive integers such that m In. Show that for any integer a, the

congruence class [a],, is the union of the congruence classes [al,, [a+m],, [a+2m],,
. la+n—ml,.

Prove that the associative and commutative laws hold for addition and multiplication
of congruence classes, as defined in Proposition 1.4.2.
Use Proposition 1.3.3 (b) to show that if [b] and [c] are both multiplicative inverses
of [a]in Z,, then b = ¢ (mod n).
Let (a,n) = 1. The smallest positive integer k such that a* = 1 (mod n) is called
the multiplicative order of [¢] in Z7.

T(a) Find the multiplicative orders of [5] and [7] in Zi(s
(b) Find the multiplicative orders of [2] and {5] in Zi(7
Let (@, n) = 1. If [a] has multiplicative order k in Z,°, show that k | p(n).

1InZg eachelement is equal to a power of [2]. (Verify this.) Can you find a congruence
classin Zg such that each element of Z is equal to some power of that class? Answer
the same question for Z7.
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27.
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Generalizing Exercise 11, we say that the set of units Z; of Zy is cyclic if it has an

element of multiplicative order ¢(n). Show that Zj; and Z7 are cyclic, but Z, is

not.
An element [¢] of Z,, is said to be idempotent if [a]2 = [a].

+(a) Find all idempotent elements of Zg and Z17.
(b) Find all idempotent elements of Zio and Z3p.
If p is a prime number, show that [0] and [1] are the only idempotent elements in Z .
If n is not a prime power, show that Z, has an idempétent element different from [0]
and [1].
Hint: Suppose that n = bc, with (b,¢) = 1. Solve the simultaneous congruences
x =1 (mod ) and x = 0 (mod ¢).

An element [a] of Z, is said to be nilpotent if [a}t = [0] for some k. ‘Show that
Z., has no nonzero nilpotent elements if and only if # has no factor that is a square
(except 1).

Using the formula for ¢(n), compute ©(27), ¢(81), and ¢(p*), where pis a prime
number. Give a proof that the formula for ¢(n) is valid when n = p“, where pisa
prime number.

Show that if @ and b are positive integers such that a 15, then o) p(d).
Find all integers n > 1 such that p(n) = 2.

Show that (1) +@(p) +...+¢(p*) = p® forany prime number p and any positive
integer «.

Show that if n > 2, then @(n) is even.
For n = 12 show that Zdln ¢(d) = n. Do the same for n = 18.
Show that if # > 1, then the sum of all positive integers less than n and relatively

prime to 7 is ng(n) /2. Thatis, Y g g<n, (@n)=1 ¢ = 1P/2.

Show that if p is a prime number, then the congruence x2 =1 (mod p) has only the
solutions x = 1 and x = —1.

Let a, b be integers, and let p be a prime number of the form p = 2k + 1. Show that
ifp faanda = b? (mod p), then a* =1 (mod p)..

Let p = 2k + 1 be a prime number. Show that if @ is an integer such that p [ a, then
either ¥ = 1 (mod p) or a® = —1 (mod p).

Prove Wilson’s theorem, which states that if p is a prime number, then (p — )! =
—1 (mod p).

Hint: (p—1)!is the product of all elements of Z; . Pair each element with its inverse,
and use Exercise 24. For three special cases see Exercise 11 in Section 1.3.
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28. Prove that if (m, n) = 1, then n®™ 4+ m®™ =1 (mod mn).

29. Prove that if m, n are positive integers with (m, n) = 1, then p(mn) = p(mypn).
Hint- Use the Chinese remainder theorem to show that each pair of elements [a]
and [b],, (n Z,, and Z, respectively) corresponds to a unique element [XTmn 0 Zpyy.
Then show that under this correspondence, [a] and [b] are units if and only if [x] is
a unit.

30. Use Exercise 17 and Exercise 29 to prove Proposition 1.4.8.

Notes

The prime numbers are the basic the basic building blocks in number theory, since
every positive integer can be written (essentially uniquely) as a product of prime
numbers. (If you are reading this before studying the chapter, perhaps we need to
remind you that an integer p > 1 is called prime if its only positive divisors are 1
and p.) Euclid considered primes and proved that there are infinitely many. When
we look at the sequence of primes

2,3,5,7, 11, 13, 17, 19, 23, 29, 31, ...

we observe that except for 2, all primes are odd. Any two odd primes on the list
must differ by at least 2, but certain pairs of “twin primes” that differ by the minimal
amount 2 do appear, for example,

(3,5, 6,7, (11,13), (17,19, (29,31), (41,43),....

Are there infinitely many “twin prime” pairs? The answer to this innocent question
is unknown. '

Although any positive integer is a product of primes, what about sums? Another
open question is attributed to Christian Goldbach (1690-1764). He asked whether
every even integer greater than 2 can be written as the sum of two primes. (Since
the sum of two odd primes is even, the only way to write an odd integer as a sum of
two primes is to use an odd prime added to 2. That means that the only odd primes
that can be represented as a sum of two primes are the ones that occur as the larger
prime in a pair of “twin primes.”) We invite you to experiment in writing some even
integers as sums of two primes.

A beautiful theorem proved by Joseph Louis Lagrange (1736-1813) in 1770
states that every positive integer can be written as the sum of four squares (where
an integer of the form n? is called a square). Could we get by with fewer than
four squares? The answer is no; try representing 7 as a sum of three squares. This
_ naturally leads to the question of which positive integers can be written as the sum
of three squares. The answer is that n can be written as a sum of three squares if and
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ANSWERS TO SELECTED EXERCISES

Exercises for which a solution is given are marked in the text by the symbol .

Chapter 1

Section 1.1

3. (2) ged(35,14) =7  (c) ged(252,180) =36 (o) gcd(7655,1001) =1
5.@7=1-35+(=2-14 (©36= (—2)-252+3-180
(&) 1 = (—397) - 7655 + 3036 - 1001
22. The integer x must have remainder 5 when divided by 11.
Section 1.2
1. (2)35 = 5171, 14 =271, (35, 14) = 7. 35, 14] = 70.
(c) 252 = 223271, 180 = 223251 (252, 180) = 36, [252, 180] = 1260.
(e) 6643 =7'131731,2873 = 132171, (6643, 2873) = 13, [6643, 2873] = 1468103.
3.fora = 4: {1,3}; fora = 6: {1,5}; . fora=09:{1,2,4,57,8}...
fora =15:{1,2,4,7,8,11, 13, 14}; etc.
5. Diagrams of divisors of 9, 20, and 100:

9 20 /100\
1 /7 \ 50 20
? 5/10\2’/4 25< >1o< >4
1 N/ 5 2
1 N/

1
Section 1.3

1.(8)x =2 (mod 7) (c) x = 13 (mod 32)

3.(a) x = 11 (mod 21) (c) No solation

5.x =9,21,33,45,57 (mod 60)

7.(@3 (c)4
15.@x=1,7915 (mod 16) (©)x=1,3, 5,7,9,11, 13, 15 (mod 16)
19. x = 43 (mod 400)

Section 1.4

1. Multiplication table for Z2:
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-]lo 1 2 3 4 5 6 7 8 9 10 11
0|0 0 0 0 0 O O O O O O O
110 1 2 3 4 5 6 7 8 9 10 11
210 2 4 6 8 10 0 2 4 6 8 10
3/0 3 6 9 0 3 6 9 0 3 6 9
410 4 8 0 4 8 0 4 8 0 4 8
5|10 5 10 3 8 1 6 1 4 9 2 7
6|0 6 0 6 0 6 0 6 0 6 0 6
710 7 2 9 4 11 6 1 8 3 10 5
8 /0 8 4 0 8 4 0 8 4 0 8 4
9/0 9 6 3 0 9 6 3 09 6 3
10/0 10 8 6 4 2 0 10 8 6 4 2
1170 11 16 9 8 7 6 35 4 3 2 1

3.(a)[14] (c) Not invertible.
9. (a) The element [5] has multiplicative order 4, and [7] has multiplicative order 2.
11. There is no such congruence class in Zg . In Z% each element is a power of [3] (or [5]).
13. (2) The idempotent elements of Zg are [0], {11, [3], [4]; and the idempotent elements of
Zy7 are [0, [1], [4], [9].

Chapter 2

Section 2.1

1. (a) The function f is one-to-one and onto.
(c) The function f is one-to-one and onto if and only if (m, n) = 1.
3.8 flx)=x-3
©)If (m,n) = 1,and km = 1 (mod n), thenf L([x1y) = [kx —kb),, forall [x], € Z,.
6. (a) There are 8 functions from S into 7', and 9 from T into S.
8. The formula in (e) defines a function; the formulas in () and (c) do not.
10. (a) f([81s) # f([0ls) (o) A([414) # h([0l4)
Section 2.2
1. (a) We have f(Z) = {1,i, —1, —i}, Z/f = Z4, and the function FiZ)f— f(Z)
is defined by f ([nlg) =i".
(c) We have h(Z12) = {[0]12, [9]12, [6]12, [Bl12} and Z1p/ h =
{10712, [[1112], [[2112], [[31121}, where [[0]12] = {[Ol12, [4]12, 8]12}, [[1]12] =
{[1J12, [5]12, [9112}, [[2]12] = {[2]12, [6]12, [10]12}, [[3112] = {[3]12, [7]12, [11112}.
The function / : Z12/ h — h(Z1p) is defined by h([[n]12]) = A(r)12) = [9nl12.
6. Define ~ by (x1, ¥1, 21) ~ (x2, ¥2, 22) ;fe.md only if z1 = z2.
8. (b) Wehave [1] = {1} and [6] = {£2'3/ |i = 1, j = 1}.
Section 2.3

(1234567 » (1234567
1'(‘1‘)‘”‘(2367415) “”““(4273615)




