Cyclic Group Exercises

1. Find all generators of the cyclic group \(G = \langle g \rangle \) if:

 (a) \(o(g) = 5 \)
 (b) \(o(g) = 10 \)
 (c) \(|G| = 16 \)
 (d) \(|G| = 20 \)

2. Find all generators of:

 (a) \(\mathbb{Z}_5 \)
 (b) \(\mathbb{Z}_{10} \)
 (c) \(\mathbb{Z}_{16} \)
 (d) \(\mathbb{Z}_{20} \)

3. In each case determine whether \(G \) is cyclic.

 (a) \(G = \mathbb{Z}_7^* \)
 (b) \(G = \mathbb{Z}_{12}^* \)
 (c) \(G = \mathbb{Z}_{16}^* \)
 (d) \(G = \mathbb{Z}_{11}^* \)

4. Let \(o(g) = 20 \) in a group \(G \). Compute:

 (a) \(o(g^2) \)
 (b) \(o(g^5) \)
 (c) \(o(g^5) \)
 (d) \(o(g^3) \)

5. In each case find all the subgroups of \(G = \langle g \rangle \) and draw the lattice diagram.

 (a) \(o(g) = 8 \)
 (b) \(o(g) = 10 \)
 (c) \(o(g) = 18 \)
 (d) \(o(g) = p^3 \), where \(p \) is prime.
 (e) \(o(g) = pq \), where \(p \) and \(q \) are distinct primes.
 (f) \(o(g) = p^2 q \), where \(p \) and \(q \) are distinct primes.

6. In each case, find the subgroup \(H = \langle x, y \rangle \) of \(G \).

 (a) \(G = \langle a \rangle \) is cyclic, \(x = a^4 \), \(y = a^3 \).
 (b) \(G = \langle a \rangle \) is cyclic, \(x = a^6 \), \(y = a^8 \).
 (c) \(G = \langle a \rangle \) is cyclic, \(x = a^m \), \(y = a^k \), \(\gcd(m, k) = d \).
 (d) \(G = S(3) \), \(x = (1, 2) \), \(y = (2, 3) \).