The first exam will be on Wednesday, September 25, 2019. The syllabus will be Chapter 1 (Sections 1.1–1.7); Chapter 2 (Sections 2.1–2.5); and Chapter 3 (Sections 3.2 and 3.4) in Long. Following are some of the concepts and results you should know:

- Know the *Induction Principle* and how to use it to do proofs by induction.
- Know the Strong Induction Principle and how to use it to do proofs by induction.
- Know the *Well-ordering principle:* Any set of positive integers which has at least one element contains a smallest element.
- Know the Division Algorithm: For any integers n and m with m > 0, there are unique integers q and r with n = mq + r and $0 \le r < m$.
- Know the definition of a divides b for integers a and b (notation: $a \mid b$): a divides b if b = ac for some integer c.

Some properties of a divides b:

- 1. If $a \mid b$ and $b \neq 0$, then $|a| \leq |b|$.
- 2. If $a \mid b$ and $b \mid c$, then $a \mid c$.
- 3. If $a \mid c$ and $b \mid d$, then $ab \mid cd$.
- 4. If $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for any integers x and y.
- Know the definition of the greatest common divisor d of the integers a and b (notation: d = (a, b)).

Different, equivalent formulations (or characterizations) of d = (a, b):

- 1. $d \mid a \text{ and } d \mid b$, and if $c \mid a \text{ and } c \mid b$, then $c \leq d$. (This is the definition of (a, b).)
- 2. d is the smallest *positive* number that can be written as d = ax + by with $x, y \in \mathbb{Z}$.
- 3. d = (a, b) if and only if d > 0, $d \mid a, d \mid b$, and $f \mid d$ for every common divisor f of a and b.
- The set of all integer linear combinations ax + by consists of the set of all multiples of (a, b). That is, if a and b are integers (with at least one nonzero), then

$$\{ax + by : x, y \in \mathbb{Z}\} = (a, b)\mathbb{Z} = \{n \in \mathbb{Z} : n = c(a, b)\}.$$

(Proved in class.)

- Know the *Euclidean Algorithm* and how to use it to compute the greatest common divisor of integers a and b, and write the greatest common divisor of a and b as an integer linear combination of a and b.
- Know the definition of *relatively prime integers*.
- Know the definition of *prime* number: p if prime if $p \ge 2$ and if $a \mid p$ then $a = \pm 1$ or $a = \pm p$.
- Know Euclid's Lemma: If $a \mid bc$ and (a, b) = 1, then $a \mid c$. (Theorem 2.8)
- Also know the special case: If p is a prime, a and b are integers, and p|ab, then p|a or p|b (Corollary 2.9).

- Know the fact: If $a \mid c, b \mid c$ and (a, b) = 1, then $ab \mid c$. (Theorem 2.13)
- Know the definition of the *least common multiple* m of the integers a and b (notation: m = [a, b]).

Different, equivalent formulations (or characterizations) of m = [a, b].

- 1. m = [a, b] for $a \neq 0, b \neq 0$ if $m > 0, a \mid m, b \mid m$ and if n is another positive common multiple of a and b, then $m \leq n$. (This is the definition.)
- 2. m = [a, b] if and only if m > 0, $a \mid m, b \mid m$ and $m \mid n$ for every common multiple of a and b. (Theorem 2.18)
- Know the relationship between the greatest common divisor and least common multiple: If $ab \neq 0$, then (a, b)[a, b] = |ab|. (Theorem 2.19) Know how to use this formula, together with the Euclidean algorithm, to compute [a, b].
- Know the inductive property of greatest common divisor and least common multiple:
 - 1. If none of a_1, a_2, \ldots, a_n is zero, then

$$(a_1, a_2, \ldots, a_n) = ((a_1, \ldots, a_{n-1}), a_n).$$

2. If none of a_1, a_2, \ldots, a_n is zero, then

$$[a_1, a_2, \ldots, a_n] = [[a_1, \ldots, a_{n-1}], a_n].$$

- Know the Prime Factorization Theorem (Fundamental Theorem of Arithmetic, Theorem 2.22). Every integer n > 2 is either a prime or a product of primes, and the product of primes is unique except for the order in which the factors appear.
- Know the relationship between prime factorization and divisibility: If $a = \prod_{i=1}^{r} p_i^{a_i}$ with $a_i > 0$ for each *i* is the canonical representation for *a* and b > 0, then $b \mid a$ if and only if $b = \prod_{i=1}^{r} p_i^{b_i}$ with $0 \le b_i \le a_i$ for each *i*. (Theorem 2.23)
- Know how to find the prime factorization of (a, b) and [a, b] from the prime factorizations of a and b. (Theorem 2.25)
- Know the basic properties and formulas for the number of divisors of a (denoted $\tau(a)$ and the sum of all the divisors of a, denoted $\sigma(a)$:

1. If
$$(a, b) = 1$$
, then $\tau(ab) = \tau(a)\tau(b)$ and $\sigma(ab) = \sigma(a)\sigma(b)$. (Proved in class)

2. If $a = \prod_{i=1}^{r} p_i^{a_i}$ with $a_i > 0$ for each *i* is the canonical representation for *a*, then

$$\tau(a) = \prod_{i=1}^{r} (a_i + 1)$$
 and $\sigma(a) = \prod_{i=1}^{r} \frac{p_i^{a_i+1} - 1}{p_i - 1}.$

- Know Euclid's proof that there are infinitely many primes.
- Know the modification of Euclid's proof to prove that there are infinitely many primes of the form 4k 1.

Review Exercises

Be sure that you know how to do all assigned homework exercises. The following are a few supplemental exercises similar to those already assigned as homework. These exercises are listed randomly. That is, there is no attempt to give the exercises in the order of presentation of material in the text.

1. Prove that

$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}$$

for all integers $n \geq 2$.

- 2. Prove that $4^n + 2$ is divisible by 6, for every positive integer n.
- 3. Prove that $3 \mid (n^3 + 5n)$ for all $n \geq 1$.
- 4. Find the greatest common divisor d = (803, 154) using the Euclidean Algorithm, and write d = (803, 154) in the form $d = s \cdot 803 + t \cdot 154$. Compute the least common multiple m = [803, 154].
- 5. Find the greatest common divisor d = (1887, 1295) using the Euclidean Algorithm, and write d = (1887, 1295) in the form $d = s \cdot 1887 + t \cdot 1295$. Compute the least common multiple m = [1887, 1295].
- 6. Use the definition of divisibility to prove that if $a \mid b$ and $b \mid c$, then $a \mid (7b 5c)$.
- 7. Let a, b, c, and d be positive integers. Determine if each of the following statements is True or False. If False, provide a counterexample.
 - (a) If a|c and b|c, then ab|c.
 - (b) If $c \mid a$ and $c \mid b$ then $c^2 \mid ab$.
 - (c) If (a, b) = 1 and (c, d) = 1, then (ac, bd) = 1.
 - (d) If $d \mid a$ and $d \mid b$, then $(a, b) \mid d$
 - (e) If there exist integers r and s such that ra + sb = d, then d = (a, b).
 - (f) If (a, b) = 3, then $[a, b] = \frac{a}{3} \cdot \frac{b}{3}$.
 - (g) Every nonempty set of positive integers contains a largest element.
- 8. What is the smallest positive integer of the form 30x + 6y + 10z for integers x, y, z?
- 9. If n is an integer then (2n+3, 3n-2) = 1 or k. What is k?
- 10. Let $a = 2^3 3^2 5^2 13$ and $b = 2^2 3^3 13^7 19$.
 - (a) What is the prime factorization of (a, b)?
 - (b) What is the prime factorization of [a, b]?
- 11. (a) Evaluate $\tau(1500)$.
 - (b) Evaluate $\sigma(1500)$.
 - (c) What prime factorizations are possible for n if $\tau(n) = 9$?

- (d) If p and q are distinct primes then evaluate $\tau(p^2q^5)$. List the divisors of p^2q^5 . (table form is fine)
- 12. What is the smallest integer n such that $\tau(n) = 8$? Such that $\tau(n) = 10$?
- 13. In 1644, Mersenne asked for a number with 60 divisors. Find one smaller than 10,000. Find infinitely many n with $\tau(n) = 60$.
- 14. Give a proof that there are infinitely many primes.
- 15. (a) Find a non-trivial factor of $2^{55} 1$.
 - (b) Find a non-trivial factor of $18^{101} 1$.
 - (c) Find a non-trivial factor of $2^{44} + 1$.