
Exam I Review Sheet Math 4181

The first exam will be on Wednesday, September 25, 2019. The syllabus will be Chapter 1 (Sections
1.1–1.7); Chapter 2 (Sections 2.1–2.5); and Chapter 3 (Sections 3.2 and 3.4) in Long.
Following are some of the concepts and results you should know:

• Know the Induction Principle and how to use it to do proofs by induction.

• Know the Strong Induction Principle and how to use it to do proofs by induction.

• Know the Well-ordering principle: Any set of positive integers which has at least one element
contains a smallest element.

• Know the Division Algorithm: For any integers n and m with m > 0, there are unique integers
q and r with n = mq + r and 0 ≤ r < m.

• Know the definition of a divides b for integers a and b (notation: a | b): a divides b if b = ac
for some integer c.

Some properties of a divides b:

1. If a | b and b 6= 0, then |a| ≤ |b|.
2. If a | b and b | c, then a | c.
3. If a | c and b | d, then ab | cd.

4. If a | b and a | c, then a | (bx+ cy) for any integers x and y.

• Know the definition of the greatest common divisor d of the integers a and b (notation:
d = (a, b)).

Different, equivalent formulations (or characterizations) of d = (a, b):

1. d | a and d | b, and if c | a and c | b, then c ≤ d. (This is the definition of (a, b).)

2. d is the smallest positive number that can be written as d = ax+ by with x, y ∈ Z.

3. d = (a, b) if and only if d > 0, d | a, d | b, and f | d for every common divisor f of a and
b.

• The set of all integer linear combinations ax+ by consists of the set of all multiples of (a, b).
That is, if a and b are integers (with at least one nonzero), then

{ax+ by : x, y ∈ Z} = (a, b)Z = {n ∈ Z : n = c(a, b)} .

(Proved in class.)

• Know the Euclidean Algorithm and how to use it to compute the greatest common divisor
of integers a and b, and write the greatest common divisor of a and b as an integer linear
combination of a and b.

• Know the definition of relatively prime integers.

• Know the definition of prime number: p if prime if p ≥ 2 and if a | p then a = ±1 or a = ±p.

• Know Euclid’s Lemma: If a | bc and (a, b) = 1, then a | c. (Theorem 2.8)

• Also know the special case: If p is a prime, a and b are integers, and p|ab, then p|a or p|b
(Corollary 2.9).
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• Know the fact: If a | c, b | c and (a, b) = 1, then ab | c. (Theorem 2.13)

• Know the definition of the least common multiple m of the integers a and b (notation: m =
[a, b]).

Different, equivalent formulations (or characterizations) of m = [a, b].

1. m = [a, b] for a 6= 0, b 6= 0 if m > 0, a | m, b | m and if n is another positive common
multiple of a and b, then m ≤ n. (This is the definition.)

2. m = [a, b] if and only if m > 0, a | m, b | m and m | n for every common multiple of a
and b. (Theorem 2.18)

• Know the relationship between the greatest common divisor and least common multiple: If
ab 6= 0, then (a, b)[a, b] = |ab|. (Theorem 2.19) Know how to use this formula, together with
the Euclidean algorithm, to compute [a, b].

• Know the inductive property of greatest common divisor and least common multiple:

1. If none of a1, a2, . . ., an is zero, then

(a1, a2, . . . , an) = ((a1, . . . , an−1), an).

2. If none of a1, a2, . . ., an is zero, then

[a1, a2, . . . , an] = [[a1, . . . , an−1], an].

• Know the Prime Factorization Theorem (Fundamental Theorem of Arithmetic, Theorem
2.22). Every integer n > 2 is either a prime or a product of primes, and the product of primes
is unique except for the order in which the factors appear.

• Know the relationship between prime factorization and divisibility: If a = Πr
i=1p

ai
i with ai > 0

for each i is the canonical representation for a and b > 0, then b | a if and only if b = Πr
i=1p

bi
i

with 0 ≤ bi ≤ ai for each i. (Theorem 2.23)

• Know how to find the prime factorization of (a, b) and [a, b] from the prime factorizations of
a and b. (Theorem 2.25)

• Know the basic properties and formulas for the number of divisors of a (denoted τ(a) and
the sum of all the divisors of a, denoted σ(a):

1. If (a, b) = 1, then τ(ab) = τ(a)τ(b) and σ(ab) = σ(a)σ(b). (Proved in class)

2. If a = Πr
i=1p

ai
i with ai > 0 for each i is the canonical representation for a, then

τ(a) = Πr
i=1(ai + 1) and σ(a) = Πr

i=1

pai+1
i − 1

pi − 1
.

• Know Euclid’s proof that there are infinitely many primes.

• Know the modification of Euclid’s proof to prove that there are infinitely many primes of the
form 4k − 1.
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Review Exercises

Be sure that you know how to do all assigned homework exercises. The following are a few supple-
mental exercises similar to those already assigned as homework. These exercises are listed randomly.
That is, there is no attempt to give the exercises in the order of presentation of material in the
text.

1. Prove that (
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
=
n+ 1

2n

for all integers n ≥ 2.

I Solution. Let S(n) be the statement(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
=
n+ 1

2n

for the integer n.

We will use induction to show that S(n) is true for all integers n ≥ 2.

Base Step. If n = 2 the statement S(2) becomes(
1− 1

22

)
=

2 + 1

2 · 2
=

3

4
,

which is a true statement.

Inductive Step. For a given integer n ≥ 2, assume that S(n) is a true statement. Thus we
are assuming that (

1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)
=
n+ 1

2n

for the given integer n. If we multiply both sides of this equation by

(
1− 1

(n+ 1)2

)
we get

(
1− 1

22

)(
1− 1

32

)
· · ·

(
1− 1

n2

)(
1− 1

(n+ 1)2

)
=

(
n+ 1

2n

)(
1− 1

(n+ 1)2

)
=

n+ 1

2n
− 1

2n(n+ 1)

=
(n+ 1)2 − 1

2n(n+ 1)

=
n2 + 2n

2n(n+ 1)

=
n+ 2

2(n+ 1)

=
(n+ 1) + 1

2(n+ 1)
.

Therefore, we have shown that if S(n) is true, then so is S(n+ 1).

By the principle of mathematical induction, S(n) is true for all natural numbers n ≥ 2. J

3



Exam I Review Sheet Math 4181

2. Prove that 4n + 2 is divisible by 6, for every positive integer n.

I Solution. Let S(n) be the statement: 4n + 2 is divisible by n for the integer n.

We will use induction to show that S(n) is true for all integers n ≥ 1.

Base Step. If n = 1 the statement S(1) becomes: 41 + 2 is divisible by 6, which is a true
statement.

Inductive Step. For a given integer n ≥ 1, assume that S(n) is a true statement. Thus we
are assuming that 4n + 2 is divisible by 6 for the given integer n. That is, we are assuming
that, for the given integer n, 4n + 2 = 6k for some integer k. Then

4n+1 + 2 = 4n · 4 + 2 = 4n · 4 + 8− 6

= 4n · 4 + 2 · 4− 6 = 4(4n + 2)− 6

= 4(6k)− 6 = 6(4k − 1).

Thus, we have shown that if 4n + 2 is divisible by 6, then 4n+1 + 2 is also divisible by 6.
Therefore, we have shown that if S(n) is true, then so is S(n+ 1).

By the principle of mathematical induction, S(n) is true for all natural numbers n ≥ 1. J

3. Prove that 3 | (n3 + 5n) for all n ≥ 1.

I Solution. This can be done by induction, as in problem 2. Alternately, one can use the
cubic form of the binomial theorem:

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3.

To apply this, note that by the division algorithm, every integer n can be written in the form
3q + k where 0 ≤ k ≤ 2. Thus, consider 3 cases.

Case 1. k = 0.

In this case n = 3q so 3 | n and hence 3 | (n3 + 5n) in this case.

Case 2. k = 1.

In this case, n = 3q + 1 so

n3 + 5n = (3q + 1)3 + 5(3q + 1) = (27q3 + 9q2 + 3q + 1) + 5(3k + 1)

= 27q3 + 9q2 + 18q + 6

= 3(9q3 + 3q2 + 6q + 2).

Thus 3 | (n3 + 5n) in this case.

Case 3. k = 2.

In this case, n = 3q + 2 so

n3 + 5n = (3q + 2)3 + 5(3q + 2) = (27q3 + 18q2 + 12q + 8) + 5(3q + 2)

= 27q3 + 18q2 + 27q + 18

= 3(9q3 + 6q2 + 9q + 6).

Thus 3 | (n3 + 5n) in this case.

Hence 3 | (n3 + 5n) in all three cases, and since these 3 cases cover all possibilities for n, it
follows that n | (n3 + 5n) for all integers n. J
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4. Find the greatest common divisor d = (803, 154) using the Euclidean Algorithm, and write
d = (803, 154) in the form d = s · 803 + t · 154. Compute the least common multiple
m = [803, 154].

I Solution. Use the Euclidean Algorithm:

803 = 5 · 154 + 33

154 = 4 · 33 + 22

33 = 1 · 22 + 11

22 = 2 · 11

Thus, (803, 154) = 11 and

11 = 33− 22

= 33− (154− 4 · 33) = 5 · 33− 154

= 5(803− 5 · 154)− 154

= 5 · 803− 26 · 154.

Then

[803, 154] =
803 · 154

(803, 154)
=

803 · 154

11
= 11, 242.

J

5. Find the greatest common divisor d = (1887, 1295) using the Euclidean Algorithm, and write
d = (1887, 1295) in the form d = s · 1887 + t · 1295. Compute the least common multiple
m = [1887, 1295].

I Solution. Use the Euclidean algorithm: Use the technique of problem 4, or alternatively,
keep track of the steps in a table as shown in class:

1887 1295

1 0 1887
0 1 1295
1 −1 592 = 1887− 1 · 1295
−2 3 111 = 1295− 2 · 592
11 −16 37 = 592− 5 · 111
−35 51 0 = 111− 3 · 37

From this, it follows that (1887, 1295) = 37 = 11 · 1887 + (−16) · 1295. Then

[1887, 1295 =
1887 · 1295

37
= 66, 045.

J

6. Use the definition of divisibility to prove that if a | b and b | c, then a | (7b− 5c).

I Solution. If a | b then b = ar (definition of divide) and if b | c then c = bs. Then
7b − 5c = 7ar − 5bs = 7ar − 5(ar)s = a(7r − 5rs). Since 7r − 5rs is an integer, then
a | (7b− 5c). J
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7. Let a, b, c, and d be positive integers. Determine if each of the following statements is True
or False. If False, provide a counterexample.

(a) If a|c and b|c, then ab|c. False. Counterexample: a = b = c = 2.

(b) If c | a and c | b then c2 | ab. True.

(c) If (a, b) = 1 and (c, d) = 1, then (ac, bd) = 1. False. Counterexample: a = d = 2,
b = c = 3. Then (a, b) = (c, d) = 1 but (ac, bd) = 6.

(d) If d | a and d | b, then (a, b) | d. False. Counterexample: a = b = 2, d = 1. Then
(a, b) = 2 and 2 - 1.

(e) If there exist integers r and s such that ra+ sb = d, then d = (a, b). False. Counterex-
ample: 4 · 3− 5 · 2 = 2 but (3, 2) = 1.

(f) If (a, b) = 3,then [a, b] = a
3 ·

b
3 . False. Counterexample: a = b = 3.

(g) Every nonempty set of positive integers contains a largest element. False. The set of
all positive integers does not contain a largest element.

8. What is the smallest positive integer of the form 30x+ 6y + 10z for integers x, y, z?

I Solution. The smallest positive integer of the form 30x+ 6y + 10z for integers x, y, z is
(30, 6, 10) = 2. J

9. If n is an integer then (2n+ 3, 3n− 2) = 1 or k. What is k?

I Solution. If d | (2n + 3) and d | (3n − 2), then d | (3(2n + 3) − 2(3n − 2)) and 3(2n +
3) − 2(3n − 2) = 13 so any common divisor must be a divisor of 13. This means that the
only possibilities for the greatest common divisor are 1 and 13 so k = 13. Both possibilities
can occur. For example, if n = 0 then (2n + 3, 3n − 2) = (3, −2) = 1 and if n = 5 then
(2n+ 3, 3n− 2) = (13, 13) = 13. J

10. Let a = 23325213 and b = 223313719.

(a) What is the prime factorization of (a, b)? Answer: (a, b) = 223213

(b) What is the prime factorization of [a, b]? Answer: [a, b] = 23335213719

11. (a) Evaluate τ(1500).

I Solution. 1500 = 22 · 3 · 53. Thus τ(1500) = 3 · 2 · 4 = 24. J

(b) Evaluate σ(1500).

I Solution.

σ(1500) = σ(22)σ(3)σ(53) =
23 − 1

2− 1
· 32 − 1

3− 1
· 54 − 1

5− 1
= 7 · 4 · 156 = 4, 368.

J

(c) What prime factorizations are possible for n if τ(n) = 9?

I Solution. τ(n) = 9 = 3·3 so possible prime factorizations of n are n = p8 or n = p2q2

for primes p and q. J
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(d) If p and q are distinct primes then evaluate τ(p2q5). List the divisors of p2q5. (table
form is fine)

I Solution. τ(p2q5) = τ(p2)τ(q5) = 3 · 6 = 18. The divisors are listed in the following
table:

1 q q2 q3 q4 q5

1 1 q q2 q3 q4 q5

p p pq pq2 pq3 pq4 pq5

p2 p2 p2q p2q2 p2q3 p2q4 p2q5

J

12. What is the smallest integer n such that τ(n) = 8? Such that τ(n) = 10?

I Solution. Since 8 = 4 · 2 = 2 · 2 · 2, we can get τ(n) = 8 provided that n = p7, n = p3q,
or n = pqr where p, q and r are distinct primes. The smallest primes are 2, 3, and 5, so the
smallest possible n would be 27 = 128, 23 · 3 = 24 or 2 · 3 · 5 = 30. Thus, the smallest possible
n with τ(n) = 8 is n = 24.

Similarly, 10 = 2 · 5 so the possible n with τ(n) = 10 are p9 and p4q for distinct primes p and
q. The smallest n among these is obtained if p = 2 and q = 3 which gives n = 16 · 3 = 48. J

13. In 1644, Mersenne asked for a number with 60 divisors. Find one smaller than 10,000. Find
infinitely many n with τ(n) = 60.

I Solution. We need an n with τ(n) = 60 = 22 ·3 ·5 = 2 ·2 ·3 ·5. Thus, n will have τ(n) = 60
provided n has one of the factorizations n = p3q2r4 or n = pqr2s4 where p, q, r, s are distinct
primes. In the first factorization let r = 2, p = 3, q = 5 to get n = 24·33·52 = 10, 800 and in the
second possible factorization use s = 2, r = 3, p = 5, and q = 7 to get n = 24 ·32 ·5 ·7 = 5040.
Thus, the only n < 10, 000 with τ(n) = 60 is n = 5040. Since any choices of primes p, q, r
and s will give τ(n) = 60, there are infinitely many n with τ(n) = 60. J

14. Give a proof that there are infinitely many primes.

I Solution. Use Euclid’s proof given in Theorem 3.1 of the text. J

15. (a) Find a non-trivial factor of 255 − 1.

I Solution. Since 55 = 5 · 11, both 25 − 1 = 31 and 211 − 1 = 2047 are divisors of
255 − 1. To see this, use the geometric series formula

xk − 1 = (x− 1)(xk−1 + xk−2 + · · ·+ x+ 1)

with k = 11 and x = 25 or k = 5 with x = 211. J

(b) Find a non-trivial factor of 18101 − 1.

I Solution. Again, use the geometric series formula with k = 101 and x = 18 to get
that 17 = (18− 1) is a divisor of 18101 − 1. J

(c) Find a non-trivial factor of 244 + 1.
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I Solution. Use the factorization x11 + 1 = (x+ 1)(x10− x9 + · · · − x+ 1) with x = 24

to get that 24 + 1 = 17 is a nontrivial factor of 244 + 1. J
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