- 1. If $a = 2^4 13^2 19$ and $b = 2^3 5^2 13$ then find the prime factorization of
 - (a) (a, b)
 - (b) [*a*, *b*]
 - (c) (a^2, b^3)
- 2. Prove that any whole number amount greater than 23 cents could be made up using an unlimited supply of 5 cent and 7 cent coupons.
- 3. (a) Evaluate $\phi(3000)$.
 - (b) Find the remainder when 11^{2402} is divided by 3000.
- 4. Use induction to prove that $6^n \equiv 5n + 1 \pmod{25}$ for all positive integers n.
- 5. Use induction to prove that $2^n \mid (2n)!$
- 6. Give a proof that there are infinitely many primes.
- 7. Find all right-angled triangles with relatively prime integer sides and base of given length:
 - (a) 28
 - (b) 55
- 8. (a) Find the prime factorization of 600.
 - (b) $\tau(n)$ is the number of positive divisors of n. Evaluate $\tau(600)$.
 - (c) $\sigma(n)$ is the sum of the positive divisors of n. Evaluate $\sigma(600)$.
 - (d) $\phi(n)$ is the Euler phi function. Evaluate $\phi(600)$.
 - (e) $\mu(n)$ is the Möbius function. Evaluate $\mu(600)$.
- 9. Give a non-trivial factor of $2^{55} 1$. (Bonus points for two.)
- 10. Prove that if $a \mid b$ and $a \mid c$ then $a^2 \mid 7bc$.
- 11. Use congruences to prove that $x^2 5y^2 = 3$ has no integer solutions.
- 12. (a) If $F(n) = \sum_{d|n} \sigma(d)$ then evaluate F(175). (b) Evaluate $\sigma(22, 491)$. (Hint: 22, 491 = 27 · 49 · 17.)
- 13. Suppose g(n) is a multiplicative function satisfying $\tau(n)^2 = \sum_{d|n} g(d)$.
 - (a) Use the Möbius inversion formula to give a formula for g(n).
 - (b) Evaluate $g(5^3)$.
 - (c) Evaluate g(700).
- 14. (a) What can you say about the prime factorization of n if $\tau(n) = 8$?
 - (b) What is the smallest n with $\tau(n) = 8$.
 - (c) Find three n with $\phi(n) = 16$.
- 15. (a) Suppose that $d = \operatorname{ord}_m a$. Prove that if $a^n \equiv 1 \pmod{m}$ then $d \mid n$.

- (b) Find (with justification) $\operatorname{ord}_m b$ if $b^8 \equiv -1 \pmod{m}$ with $m \geq 2$.
- 16. (a) What is the order of 3 modulo 23?
 - (b) If the order of b modulo m is 15, what is the order of b^6 modulo m.
- 17. Use the Chinese Remainder Theorem to solve the simultaneous congruences:

$$x \equiv 3 \pmod{5}$$
$$x \equiv 2 \pmod{7}$$
$$x \equiv 1 \pmod{6}$$

- 18. (a) Use the Euclidean algorithm to compute the greatest common divisor (2517, 2370).
 - (b) Find all integer solutions to the equation 2517x 2370y = 69, or explain why there are none.
 - (c) Solve the linear congruence $2370x \equiv 69 \pmod{2517}$ or explain why there are no solutions.
- 19. (a) For which odd primes p does the Legendre symbol $\left(\frac{2}{p}\right) = 1$?
 - (b) For which distinct odd primes p, q does the Legendre symbol satisfy $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$?
 - (c) Evaluate the Legendre symbol $\left(\frac{431}{1097}\right)$.
- 20. Find a complete solution to the congruence $x^2 5x + 6 \equiv 0 \pmod{187}$. (Note that $187 = 11 \cdot 17$.)
- 21. Solve $x^2 + x + 2 \equiv 0 \pmod{121}$.
- 22. Determine if each of the following congruences have a solution.
 - (a) $x^2 \equiv 15 \pmod{41}$.
 - (b) $x^2 + 5x + 7 \equiv 0 \pmod{97}$.
 - (c) $3x^2 + 4x + 5 \equiv 0 \pmod{51}$.
- 23. Circle True (T) or False (F). Reasons are not required.
 - \mathbf{F} (a) If $15 \mid a^2$ then $15 \mid a$. Т (b) If $x^2 \equiv 1 \pmod{35}$ then $x \equiv \pm 1 \pmod{35}$. Т F (c) $\{21, -3, 13, -15, -4\}$ is a complete residue system modulo 5. Т F (d) $7^{753} \equiv 2 \pmod{11}$. Τ \mathbf{F} (e) $\{1, 3, -3, 9\}$ is a reduced residue system modulo 10. Т \mathbf{F} (f) The Fibonacci numbers satisfy $f_{2n+3} - f_{2n+2} = f_{2n+1}$. Т \mathbf{F} Т \mathbf{F} 10 times F (h) If p is an odd prime then $2^p \equiv 2 \pmod{p}$. Т Т (i) The composition $\tau(\tau(n))$ is a multiplicative function. \mathbf{F} (j) If p is prime then $\phi(pm) = \phi(m)$. Т \mathbf{F} Т (k) $\sum_{d|n} \phi(d) = n$. F