1. If $a=2^{4} 13^{2} 19$ and $b=2^{3} 5^{2} 13$ then find the prime factorization of
(a) (a, b)

- Solution. $(a, b)=2^{3} \cdot 13$
(b) $[a, b]$
- Solution. $[a, b]=2^{4} 5^{2} 13^{2} 19$
(c) $\left(a^{2}, b^{3}\right)$
- Solution. $a^{2}=2^{8} 13^{4} 19^{2}$ and $b^{3}=2^{9} 5^{6} 13^{3}$ so $\left(a^{2}, b^{3}\right)=2^{9} 13^{4} 5^{6} 19^{2}$.

2. Prove that any whole number amount greater than 23 cents could be made up using an unlimited supply of 5 cent and 7 cent coupons.

Solution. Prove by induction. For the base step, $24=2 \cdot 5+2 \cdot 7$.
Induction Step: Assume that $k=x \cdot 5+y \cdot 7$ with $x, y \geq 0$ and $k \geq 24$. If $y \geq 2$ then $k+1=(x+1) \cdot 5+(y-2) \cdot 7$, that is, remove two 7's and add three 5's.
If $x \geq 4$ then $k+1=(x-4) \cdot 5+(y+3) \cdot 7$, that is, remove four 5 's and add three 7 's.
One of these two cases must occur since $x \leq 3, y \leq 1$ only give $k \leq 3 \cdot 5+1 \cdot 7=22<24$.
Hence, if $k \geq 24$ can be written as $5 x+7 y$ for $x, y \geq 0$, then so can $k+1$. Hence the principle of induction implies that all integers ≥ 24 can be written in the form $5 x+7 y$.
3. (a) Evaluate $\phi(3000)$.

- Solution. $3000=3 \cdot 2^{3} \cdot 5^{3}$ so $\phi(3000)=\phi(3) \phi\left(2^{3}\right) \phi\left(5^{3}\right)=(3-1)\left(2^{3}-2^{2}\right)\left(5^{3}-5^{2}\right)=$ $3 \cdot 4 \cdot 100=1200$.
(b) Find the remainder when 11^{2402} is divided by 3000 .
- Solution. From Euler's theorem $11^{2402}=11^{2 \cdot 1200+2}=\left(11^{1200}\right)^{2} \cdot 11^{2} \equiv 1^{2} \cdot 11^{2} \equiv 121$ $(\bmod 3000)$. Thus, the remainder when 11^{2402} is divided by 300 is 121 .

4. Use induction to prove that $6^{n} \equiv 5 n+1(\bmod 25)$ for all positive integers n.

- Solution. For the base step, $6^{1}=6=5 \cdot 1+1$ so $6^{1} \equiv 5 \cdot 1+1(\bmod 25)$.

Induction step: Assume that $6^{k} \equiv 5 k+1(\bmod 25)$ for some positive integer k. Then

$$
\begin{aligned}
6^{k+1} & =6^{k} \cdot 6=6^{k}(5+1) \\
& \equiv(5 k+1)(5+1) \quad(\bmod 25) \quad \text { by the induction hypothesis } \\
& \equiv 25 k+5 k+5+1=25 k+5(k+1)+1 \quad(\bmod 25) \\
& \equiv 5(k+1)+1 \quad(\bmod 25)
\end{aligned}
$$

Thus, if $6^{n} \equiv 5 n+1$ for $n=k$ then it is also true for $n=k+1$, and by the induction principle, it is valid for all $n \geq 1$.
5. Use induction to prove that $2^{n} \mid(2 n)$!

Solution. For the base step, $2^{1}=2=2$! so $2^{1} \mid(2 \cdot 1)$!.
Induction step: Assume that $2^{k} \mid(2 k)$!. This means that $(2 k)!=2^{k} \cdot c$ for some integer c. Then,

$$
\begin{aligned}
(2(k+1))! & =(2(k+1))(2 k+1)(2 k)! \\
& =2(k+1)(2 k+1) \cdot 2^{k} \cdot c \\
& =2^{k+1} \cdot(k+1)(2 k+1) c
\end{aligned}
$$

Hence, if $2^{k} \mid(2 k)$! then $2^{k+1} \mid(2(k+1))$! and by the principle of induction, $2^{n} \mid(2 n)$! for all positive integers.
6. Give a proof that there are infinitely many primes.

Solution. Let $p_{1}, p_{2}, \ldots, p_{r}$ be any finite set of prime numbers. Define $N=p_{1} \cdot p_{2} \cdots p_{r}+1$. Then N is an integer and hence there is a prime divisor q of $N . q$ cannot be one of the primes $p_{1}, p_{2}, \ldots, p_{r}$, since, if q is one of these primes, then $q \mid p_{1} \cdot p_{2} \cdots p_{r}$ and since $q \mid N$ it would follow that $q \mid\left(N-p_{1} \cdot p_{2} \cdots p_{r}\right)$ or $q \mid 1$. But any prime is greater than 1 and so $q \nmid 1$. Hence, q must be different from $p_{1} \cdot p_{2} \cdots p_{r}$. Therefore, any finite list cannot contain all primes, so there is an infinite number of primes.
7. Find all right-angled triangles with relatively prime integer sides and base of given length:
(a) 28

- Solution. $x=2 s t=28$ so $s t=14$ which gives two cases: $s=1, t=14$ and $s=2$, $t=7$.
Case 1: $x=28, y=t^{2}-s^{2}=14^{2}-1^{2}=195, z=t^{2}+s^{2}=14^{2}+1^{2}=197$
Case 2: $x=28, y=t^{2}-s^{2}=7^{2}-2^{2}=45, z=t^{2}+s^{2}=7^{2}+2^{2}=53$
(b) 55

Solution. $y=55=t^{2}-s^{2}=(t+s)(t-s)$
Case 1: $t+s=55, t-s=1$. Solving for t, s gives $t=28, s=27$. Thus,

$$
x=2 s t=1512, \quad y=55, \quad z=t^{2}+s^{2}=1513
$$

Case 2: $t+s=11, t-s=5$ so $t=8, s=3$. Thus,

$$
x=2 s t, \quad y=55, \quad z=t^{2}+s^{2}=73
$$

8. (a) Find the prime factorization of 600.

- Solution. $600=2^{3} \cdot 3 \cdot 5^{2}$
(b) $\tau(n)$ is the number of positive divisors of n. Evaluate $\tau(600)$.
- Solution. $\tau(600)=\tau\left(2^{3} \cdot 3 \cdot 5^{2}\right)=\tau\left(2^{3}\right) \tau(3) \tau\left(5^{2}\right)=(3+1)(1+1)(2+1)=24$
(c) $\sigma(n)$ is the sum of the positive divisors of n. Evaluate $\sigma(600)$.
- Solution.

$$
\begin{aligned}
\sigma(600) & =\sigma\left(2^{3} \cdot 3 \cdot 5^{2}\right)=\sigma\left(2^{3}\right) \sigma(3) \sigma\left(5^{2}\right) \\
& =\frac{2^{3+1}-1}{2-1}(1+3) \frac{5^{2+1}-1}{5-1}=15 \cdot 4 \cdot 31 \\
& =1860
\end{aligned}
$$

(d) $\phi(n)$ is the Euler phi function. Evaluate $\phi(600)$.

- Solution.

$$
\begin{aligned}
\phi(600) & =\phi\left(2^{3} \cdot 3 \cdot 5^{2}\right)=\phi\left(2^{3}\right) \phi(3) \phi\left(5^{2}\right) \\
& =\left(2^{3}-2^{2}\right)(3-1)\left(5^{2}-5\right)=4 \cdot 2 \cdot 20 \\
& =160
\end{aligned}
$$

(e) $\mu(n)$ is the Möbius function. Evaluate $\mu(600)$.

- Solution. Since $4 \mid 600, \mu(600)=0$.

9. Give a non-trivial factor of $2^{55}-1$. (Bonus points for two.)

-Solution.

$$
\begin{aligned}
2^{55}-1 & =\left(2^{5}\right)^{11}-1 \\
& =\left(2^{5}-1\right)\left(\left(2^{5}\right)^{10}+\left(2^{5}\right)^{9}+\left(2^{5}\right)^{8}+\left(2^{5}\right)^{7}+\left(2^{5}\right)^{6}+\left(2^{5}\right)^{5}+\left(2^{5}\right)^{4}+\left(2^{5}\right)^{3}+\left(2^{5}\right)^{2}+2^{5}+1\right)
\end{aligned}
$$

Therefore, $2^{5}-1=31$ is a factor of $2^{55}-1$. Similarly,

$$
\begin{aligned}
2^{55}-1 & =\left(2^{11}\right)^{5}-1 \\
& =\left(2^{11}-1\right)\left(\left(2^{11}\right)^{4}+\left(2^{11}\right)^{3}+\left(2^{11}\right)^{2}+\left(2^{11}\right)^{1}+1\right)
\end{aligned}
$$

Therefore, $2^{11}-1=2048-1=2047$ is also a factor of $2^{55}-1$.
10. Prove that if $a \mid b$ and $a \mid c$ then $a^{2} \mid 7 b c$.

- Solution. If $a \mid b$ then $b=a k$ for some integer k. If $a \mid c$, then $c=a m$ for some integer m. Then

$$
7 b c=7(a k)(a m)=a^{2}(7 \mathrm{~km}),
$$

and thus $a^{2} \mid 7 b c$.
11. Use congruences to prove that $x^{2}-5 y^{2}=3$ has no integer solutions.

- Solution. If $x^{2}-5 y^{2}=3$ then $x^{2}=3+5 y^{2}$ so $x^{2} \equiv 3(\bmod 5)$. However, if $x \equiv 0(\bmod 5)$ then $x^{2} \equiv 0(\bmod 5)$, if $x \equiv \pm 1(\bmod 5)$ then $x^{2} \equiv 1(\bmod 5)$, and if $x \equiv \pm 2(\bmod 5)$ then $x^{2} \equiv 4(\bmod 5)$. Since these cases account for all integers x, it follows that $x^{2} \not \equiv 3(\bmod 5)$ so the given equation has no integer solutions.

12. (a) If $F(n)=\sum_{d \mid n} \sigma(d)$ then evaluate $F(175)$.

- Solution. Since $\sigma(n)$ is a multiplicative function, so is $F(n)$. Thus, to evaluate $F(175)$ it is only necessary to evaluae $F(7)$ and $F\left(5^{2}\right)$ since $175=5^{2} \cdot 7$. But,

$$
F(7)=\sigma(1)+\sigma(7)=1+(1+7)=9,
$$

and

$$
F\left(5^{2}\right)=\sigma(1)+\sigma(5)+\sigma\left(5^{2}\right)=1+(1+5)+\left(1+5+5^{2}\right)=38 .
$$

Therefore, $F(175)=F\left(5^{2} \cdot 7\right)=F\left(5^{2}\right) F(7)=38 \cdot 9=342$.
(b) Evaluate $\sigma(22,491)$. (Hint: $22,491=27 \cdot 49 \cdot 17$.)

- Solution. Since $\sigma(n)$ is multiplicative,

$$
\begin{aligned}
\sigma(22,491) & =\sigma\left(3^{3} \cdot 7^{2} \cdot 17\right) \\
& =\sigma\left(3^{3}\right) \sigma\left(7^{2}\right) \sigma(17) \\
& =\left(1+3+3^{2}+3^{3}\right)\left(1+7+7^{2}\right)(1+17) \\
& =40 \cdot 57 \cdot 18=41,040 .
\end{aligned}
$$

13. Suppose $g(n)$ is a multiplicative function satisfying $\tau(n)^{2}=\sum_{d \mid n} g(d)$.
(a) Use the Möbius inversion formula to give a formula for $g(n)$.

- Solution. From the Möbius inversion formula $g(n)=\sum_{d \mid n} \mu(d) \tau^{2}(n / d)$.
(b) Evaluate $g\left(5^{3}\right)$.

Solution. If p is a prime, then

$$
\begin{aligned}
g\left(p^{k}\right) & =\mu(1) \tau^{2}\left(p^{k}\right)+\mu(p) \tau^{2}\left(p^{k-1}\right)+\mu\left(p^{2}\right) \tau^{2}\left(p^{k-2}\right)+\cdots \\
& =(k+1)^{2}-k^{2}
\end{aligned}
$$

since $\mu\left(p^{t}\right)=0$ for $t \geq 2$. Therefore, $g\left(5^{3}\right)=4^{2}-3^{2}=7$.
(c) Evaluate $g(700)$.

Solution. Since g is multiplicative and $700=2^{2} \cdot 5^{2} \cdot 7$ we have that

$$
g(700)=g\left(2^{2}\right) g\left(5^{2}\right) g(7)=\left(3^{2}-2^{2}\right)\left(3^{2}-2^{2}\right)\left(2^{2}-1^{2}\right)=75
$$

14. (a) What can you say about the prime factorization of n if $\tau(n)=8$?

- Solution. If $\tau(n)=8$, then $n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$ is the prime factorization of n and possible factorization of $\tau(n)$ are given by

$$
\tau\left(p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}\right)=\left(k_{1}+1\right) \cdots\left(k_{r}+1\right)=8=2 \cdot 4=2 \cdot 2 \cdot 2
$$

This gives $n=p^{7}, n=p_{1}\left(p_{2}\right)^{3}$, or $n=p_{1} p_{2} p_{3}$
(b) What is the smallest n with $\tau(n)=8$.

- Solution. The smallest n with $\tau(n)=8$ is obtained by taking the smallest possible primes in calculating n in part (a). $2^{7}=128,2^{2} \cdot 3=24$, and $2 \cdot 3 \cdot 5=30$. Therefore, the smallest n with $\tau(n)=8$ is $n=24$.
(c) Find three n with $\phi(n)=16$.

Solution. $\phi\left(p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}\right)=\prod_{i=1}^{r} p_{i}^{k_{i}-1}\left(p_{i}-1\right)=2^{4}$. If $p-1 \mid 2^{4}$ then $p=2,3,5,17$ and if $p^{k-1} \mid 2^{4}$ then $p=2$ and $1 \leq k \leq 5$ Thus some candidates for n are $17,32,34,40$, 48, 60.
15. (a) Suppose that $d=\operatorname{ord}_{m} a$. Prove that if $a^{n} \equiv 1(\bmod m)$ then $d \mid n$.

- Solution. By the division algorithm, $n=d q+r$ where $0 \leq r<d$. Then

$$
1 \equiv a^{n} \equiv a^{d q+r} \equiv\left(a^{d}\right)^{q} a^{r} \equiv 1^{q} a^{r} \quad(\bmod m)
$$

But $r<d$ and d is the smallest positive integer k with $a^{k} \equiv 1(\bmod m)$. Thus, r cannot be positive so it must be 0 and hence $n=d q$. That is $d \mid n$.
(b) Find (with justification) $\operatorname{ord}_{m} b$ if $b^{8} \equiv-1(\bmod m)$ with $m \geq 2$.

- Solution. $b^{16}=\left(b^{8}\right)^{2} \equiv(-1)^{2} \equiv 1(\bmod m)$. Therefore, $d-\operatorname{ord}_{m} b \mid 16$ so $d=1,2$, 4,8 or 16 . If $d=1,2,4$, or 8 then $a^{8} \equiv 1(\bmod m)$. But $a^{8} \equiv-1 \not \equiv 1(\bmod m)$ since $m \geq 2$. Thus, $d=16$.

16. (a) What is the order of 3 modulo 23 ?

- Solution. From Fermat's theorem $3^{22} \equiv 1(\bmod 23)$. Thus $d=\operatorname{ord}_{23} 3 \mid 22$ so $d=1,2,11$, or 22 . Calculating modulo 23 , we have $3^{2} \equiv 9,3^{3}=27 \equiv 4,3^{4} \equiv 12$, $3^{8} \equiv 12^{2} \equiv 144 \equiv 6,3^{11}=3^{3} 3^{8} \equiv 4 \cdot 6 \equiv 24 \equiv 1$. Thus, ord ${ }_{23} 3=11$ since $3^{11} \equiv 1$ $(\bmod 23)$ but $3^{2} \not \equiv 1$.
(b) If the order of b modulo m is 15 , what is the order of b^{6} modulo m.
- Solution. If $\operatorname{ord}_{m} b=15$ then $\operatorname{ord}_{m} b^{6}=15 /(15,6)=15 / 3=5$.

17. Use the Chinese Remainder Theorem to solve the simultaneous congruences:

$$
\begin{array}{lr}
x \equiv 3 & (\bmod 5) \\
x \equiv 2 & (\bmod 7) \\
x \equiv 1 & (\bmod 6)
\end{array}
$$

Solution. Let $M=5 \cdot 7 \cdot 6=210, M_{1}=7 \cdot 6=42, M-2=5 \cdot 6=30, M_{3}=5 \cdot 7=35$. Then solve the linear congruences:
$M_{1} x_{1} \equiv 1(\bmod 5) \Longrightarrow 42 x_{1} \equiv 1(\bmod 5) \Longrightarrow 2 x_{1} \equiv 1(\bmod 5) \Longrightarrow x_{1} \equiv 3(\bmod 5)$
$M_{2} x_{2} \equiv 1(\bmod 7) \Longrightarrow 30 x_{2} \equiv 1(\bmod 7) \Longrightarrow 2 x_{2} \equiv 1(\bmod 7) \Longrightarrow x_{2} \equiv 4(\bmod 7)$
$M_{3} x_{3} \equiv 1(\bmod 6) \Longrightarrow 35 x_{3} \equiv 1(\bmod 6) \Longrightarrow(-1) x_{3} \equiv 1(\bmod 6) \Longrightarrow x_{3} \equiv-1$ $(\bmod 6)$.
Then the solution of the simultaneous congruences is

$$
\begin{aligned}
x & \equiv a_{1} M_{1} x_{1}+a_{2} M_{2} x_{2}+a_{3} M_{3} x_{3} \quad(\bmod M) \\
& \equiv 3 \cdot 42 \cdot 3+2 \cdot 30 \cdot 4+1 \cdot 35 \cdot(-1) \quad(\bmod 210) \\
& \equiv 583 \equiv 163 \quad(\bmod 210) .
\end{aligned}
$$

18. (a) Use the Euclidean algorithm to compute the greatest common divisor (2517, 2370).

- Solution. Use the Euclidean Algorithm:

2517	2370		
1	0	2517	
0	1	2370	
1	-1	147	$=2517-2370$
-16	17	18	$=2370-16 \cdot 147$
129	-137	3	$=147-8 \cdot 18$

Thus, $(2517,2370)=3=2517 \cdot 129+2370 \cdot(-137)$.
(b) Find all integer solutions to the equation $2517 x-2370 y=69$, or explain why there are none.

- Solution. From part (a), $2517 \cdot 129+2370 \cdot(-137)=3$ and multiplying by 23 gives

$$
2517 \cdot 2967-2370 \cdot 3151=69
$$

That is, $x_{0}=2967$ and $y_{0}=3151$ is one solution to the linear equation. The remaining solutions are given by

$$
x_{k}=x_{0}+k \frac{2370}{3}=2967+k \cdot 790, \quad y_{k}=y_{0}+k \frac{2517}{3}=3151+k \cdot 839
$$

where k is an arbitrary integer.
(c) Solve the linear congruence $2370 x \equiv 69(\bmod 2517)$ or explain why there are no solutions.

- Solution. From part (b), one solution to this linear congruence is $x=-3151(\bmod 2517)$ or $x \equiv 1883(\bmod 2517)$ is the least residue. Since $(2517,2370)=3$ there are 3 incongruent solutions modulo 2517:
$x_{0} \equiv 1883, x_{1}=1883+\frac{2517}{3}=1883+839=2722 \equiv 205, x_{2}=x_{1}+839=1044$

19. (a) For which odd primes p does the Legendre symbol $\left(\frac{2}{p}\right)=1$?

Solution. $\left(\frac{2}{p}\right)=1$ if and only if $p \equiv \pm 1(\bmod 8)$.
(b) For which distinct odd primes p, q does the Legendre symbol satisfy $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$?

- Solution. When p and q are both congruent to 3 modulo 4 .
(c) Evaluate the Legendre symbol $\left(\frac{431}{1097}\right)$.
- Solution. Since $1097 \equiv 1(\bmod 4)$,

$$
\begin{aligned}
\left(\frac{431}{1097}\right) & =\left(\frac{1097}{431}\right)=\left(\frac{2 \cdot 431+235}{431}\right)=\left(\frac{235}{431}\right) \\
& =\left(\frac{5}{431}\right)\left(\frac{47}{431}\right)=\left(\frac{431}{5}\right)\left(\frac{47}{431}\right) \\
& =\left(\frac{1}{5}\right)\left(\frac{47}{431}\right)=\left(\frac{47}{431}\right) \\
& =-\left(\frac{431}{47}\right)=-\left(\frac{431}{47}\right)=-\left(\frac{9 \cdot 47+8}{47}\right) \\
& =-\left(\frac{8}{47}\right)=-\left(\frac{2^{2} \cdot 2}{47}\right)=-\left(\frac{2}{47}\right)=-1
\end{aligned}
$$

where the last equality is because $47 \equiv-1(\bmod 8)$.
20. Find a complete solution to the congruence $x^{2}-5 x+6 \equiv 0(\bmod 187)$. (Note that $187=$ 11•17.)

Solution. First solve $x^{2}-5 x+6 \equiv 0(\bmod 11)$ and $x^{2}-5 x+6 \equiv 0(\bmod 17)$. Since 11 and 17 are prime, each of these quadratic congruences has at most 2 incongruent solutions by Lagrange's theorem. Since $x^{2}-5 x+6=(x-2)(x-3)$ it is clear that the first congruence has the solutions $x \equiv 2,3(\bmod 11)$ and the second has the solutions $x \equiv 2,3(\bmod 17)$. Thus, to solve the original congruence we need to solve the simultaneous systems

$$
\begin{aligned}
& x \equiv 2,3 \quad(\bmod 11) \\
& x \equiv 2,3 \quad(\bmod 17)
\end{aligned}
$$

Since $17 \cdot 2-11 \cdot 3=1$ we get that $34 \equiv 1(\bmod 11) ; 34 \equiv 0(\bmod 17)$ while $-33 \equiv 0$ $(\bmod 11) ;-33 \equiv 1(\bmod 17)$. Thus, the solutions of the simultaneous congruences are given by

$$
x \equiv\{2,3\} \cdot 34+\{2,3\} \cdot(-33) \quad(\bmod 187)
$$

This gives the 4 incongruent solutions

$$
\begin{aligned}
& x_{1} \equiv 2 \cdot 34-2 \cdot 33 \equiv 2 \quad(\bmod 187) \\
& x_{2} \equiv 2 \cdot 34-3 \cdot 33 \equiv-31 \equiv 156 \quad(\bmod 187) \\
& x_{3} \equiv 3 \cdot 34-2 \cdot 33 \equiv 36 \quad(\bmod 187) \\
& x_{4} \equiv 3 \cdot 34-3 \cdot 33 \equiv 3 \quad(\bmod 187)
\end{aligned}
$$

21. Solve $x^{2}+x+2 \equiv 0(\bmod 121)$.

- Solution. First solve $x^{2}+x+2 \equiv 0(\bmod 11)$. The discriminant is $b^{2}-4 a c=1-8=-7 \equiv$ $4(\bmod 11)$. The solutions of $y^{2} \equiv 4(\bmod 11)$ are $y \equiv \pm 2(\bmod 11)$. Hence the solutions of the quadratic are $x_{1} \equiv(-1+2) / 2 \equiv 6(\bmod 11)$ and $x_{2} \equiv(-1-2) ? 3 \equiv 8 / 2 \equiv 4(\bmod 11)$. Extend each of these to a solution of $f(x)=x^{2}+x+2$ modulo 121.
Case 1: $x_{1}=6$. Look for a solution modulo 121 of the form $x_{1}^{\prime}=x_{1}+11 y$ where y satisfies the linear congruence

$$
\frac{f\left(x_{1}\right)}{11}+f^{\prime}\left(x_{1}\right) y \equiv 0 \quad(\bmod 11)
$$

Since $f^{\prime}(x)=2 x+1$ this congruence becomes

$$
\frac{f\left(x_{1}\right)}{11}+f^{\prime}\left(x_{1}\right) y \equiv \frac{44}{11}+13 y \equiv 4+2 y \quad(\bmod 11)
$$

and hence $y \equiv-2 \equiv 9(\bmod 11)$. Thus, $x_{1}^{\prime}=x_{1}+11 y=6+11 \cdot 9 \equiv 105 \equiv-16(\bmod 11)$.
Case 1: $x_{2}=4$. Look for a solution modulo 121 of the form $x_{2}^{\prime}=x_{2}+11 y$ where y satisfies the linear congruence

$$
\frac{f\left(x_{2}\right)}{11}+f^{\prime}\left(x_{2}\right) y \equiv 0 \quad(\bmod 11)
$$

Since $f^{\prime}(x)=2 x+1$ this congruence becomes

$$
\frac{f\left(x_{2}\right)}{11}+f^{\prime}\left(x_{2}\right) y \equiv \frac{22}{11}+9 y \equiv 2-2 y \quad(\bmod 11)
$$

and hence $y \equiv 1(\bmod 11)$. Thus, $x_{2}^{\prime}=x_{2}+11 y=4+11 \cdot 1 \equiv 15(\bmod 11)$.
Therefore, the only solutions of the quadratic modulo 121 are $x \equiv 15,105(\bmod 121)$.
22. Determine if each of the following congruences have a solution.
(a) $x^{2} \equiv 15(\bmod 41)$.

- Solution. It is necessary to determine if 15 is a quadratic residue modulo 41. For this, use the Legendre symbol.

$$
\begin{aligned}
\left(\frac{15}{41}\right) & =\left(\frac{5}{41}\right)\left(\frac{3}{41}\right) \\
& =\left(\frac{41}{5}\right)\left(\frac{41}{3}\right) \text { since } 41 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{5 \cdot 8+1}{41}\right)\left(\frac{13 \cdot 3+2}{41}\right)=\left(\frac{1}{5}\right)\left(\frac{2}{3}\right) \\
& =1 \cdot(-1)=-1
\end{aligned}
$$

Thus, 15 is a quadratic non-residue modulo 41 so the equation $x^{2} \equiv 15(\bmod 41)$ is no solvable.
(b) $x^{2}+5 x+7 \equiv 0(\bmod 97)$.

- Solution. It is necessary to determine if the discriminant is a quadratic residue or non-residue modulo 97. The discriminant is $b^{2}-4 a c=25-28=-3$. Thus compute the Legendre sysmbol

$$
\begin{aligned}
\left(\frac{-3}{97}\right) & =\left(\frac{-1}{97}\right)\left(\frac{3}{97}\right) \\
& =1 \cdot\left(\frac{3}{97}\right) \\
& =\left(\frac{97}{3}\right)=\left(\frac{1}{3}\right)=1
\end{aligned}
$$

Thus, $x^{2}+5 x+7 \equiv 0(\bmod 97)$ is solvable.
(c) $3 x^{2}+4 x+5 \equiv 0(\bmod 51)$.

- Solution. Since $51=3 \cdot 17,3 x^{2}+4 x+5 \equiv 0(\bmod 51)$ is solvable if and only if $3 x^{2}+4 x+5 \equiv 0(\bmod 3)$ and $3 x^{2}+4 x+5 \equiv 0(\bmod 17)$ are both solvable. The first equation is $4 x+5 \equiv 0(\bmod 3)$ which is solvable since $(4,3)=1$. For the second one, the congruence is solvable if and only if the discriminant is a quadratic residue modulo 17. The discriminant is $b^{2}-4 a c=16-60=-44 \equiv 7(\bmod 17)$. Now use the Legendre symbol

$$
\begin{aligned}
\left(\frac{7}{17}\right) & =\left(\frac{17}{7}\right)=\left(\frac{3}{7}\right) \\
& =-\left(\frac{7}{3}\right)=-\left(\frac{1}{3}\right)=-1 .
\end{aligned}
$$

Thus, the discriminant is a quadratic non-residue modulo 17 and hence $3 x^{2}+4 x+5 \equiv 0$ $(\bmod 17)$ is not solvable. Therefore, $3 x^{2}+4 x+5 \equiv 0(\bmod 51)$ is not solvable.
23. Circle True (T) or False (F). Reasons are not required.

