1. If $a = 2^4 13^2 19$ and $b = 2^3 5^2 13$ then find the prime factorization of

- (a) (a, b)
 ▶ Solution. (a, b) = 2³ · 13
 (b) [a, b]
 ▶ Solution. [a, b] = 2⁴5²13²19
 (c) (a², b³)
 - ▶ Solution. $a^2 = 2^8 13^4 19^2$ and $b^3 = 2^9 5^6 13^3$ so $(a^2, b^3) = 2^9 13^4 5^6 19^2$.
- 2. Prove that any whole number amount greater than 23 cents could be made up using an unlimited supply of 5 cent and 7 cent coupons.

▶ Solution. Prove by induction. For the base step, $24 = 2 \cdot 5 + 2 \cdot 7$. Induction Step: Assume that $k = x \cdot 5 + y \cdot 7$ with $x, y \ge 0$ and $k \ge 24$. If $y \ge 2$ then $k + 1 = (x + 1) \cdot 5 + (y - 2) \cdot 7$, that is, remove two 7's and add three 5's. If $x \ge 4$ then $k + 1 = (x - 4) \cdot 5 + (y + 3) \cdot 7$, that is, remove four 5's and add three 7's. One of these two cases must occur since $x \le 3, y \le 1$ only give $k \le 3 \cdot 5 + 1 \cdot 7 = 22 < 24$. Hence, if $k \ge 24$ can be written as 5x + 7y for $x, y \ge 0$, then so can k + 1. Hence the principle of induction implies that all integers ≥ 24 can be written in the form 5x + 7y.

3. (a) Evaluate $\phi(3000)$.

▶ Solution. $3000 = 3 \cdot 2^3 \cdot 5^3$ so $\phi(3000) = \phi(3)\phi(2^3)\phi(5^3) = (3-1)(2^3-2^2)(5^3-5^2) = 3 \cdot 4 \cdot 100 = 1200.$

(b) Find the remainder when 11^{2402} is divided by 3000.

▶ Solution. From Euler's theorem $11^{2402} = 11^{2 \cdot 1200 + 2} = (11^{1200})^2 \cdot 11^2 \equiv 1^2 \cdot 11^2 \equiv 121 \pmod{3000}$. Thus, the remainder when 11^{2402} is divided by 300 is 121.

4. Use induction to prove that $6^n \equiv 5n + 1 \pmod{25}$ for all positive integers n.

▶ Solution. For the base step, $6^1 = 6 = 5 \cdot 1 + 1$ so $6^1 \equiv 5 \cdot 1 + 1 \pmod{25}$. Induction step: Assume that $6^k \equiv 5k + 1 \pmod{25}$ for some positive integer k. Then

> $6^{k+1} = 6^k \cdot 6 = 6^k (5+1)$ $\equiv (5k+1)(5+1) \pmod{25} \quad \text{by the induction hypothesis}$ $\equiv 25k+5k+5+1 = 25k+5(k+1)+1 \pmod{25}$ $\equiv 5(k+1)+1 \pmod{25}.$

Thus, if $6^n \equiv 5n+1$ for n = k then it is also true for n = k+1, and by the induction principle, it is valid for all $n \ge 1$.

5. Use induction to prove that $2^n \mid (2n)!$

▶ Solution. For the base step, $2^1 = 2 = 2!$ so $2^1 | (2 \cdot 1)!$.

Induction step: Assume that $2^k \mid (2k)!$. This means that $(2k)! = 2^k \cdot c$ for some integer c. Then,

$$\begin{aligned} (2(k+1))! &= (2(k+1))(2k+1)(2k)! \\ &= 2(k+1)(2k+1) \cdot 2^k \cdot c \\ &= 2^{k+1} \cdot (k+1)(2k+1)c. \end{aligned}$$

Hence, if $2^k \mid (2k)!$ then $2^{k+1} \mid (2(k+1))!$ and by the principle of induction, $2^n \mid (2n)!$ for all positive integers.

6. Give a proof that there are infinitely many primes.

▶ Solution. Let p_1, p_2, \ldots, p_r be any finite set of prime numbers. Define $N = p_1 \cdot p_2 \cdots p_r + 1$. Then N is an integer and hence there is a prime divisor q of N. q cannot be one of the primes p_1, p_2, \ldots, p_r , since, if q is one of these primes, then $q \mid p_1 \cdot p_2 \cdots p_r$ and since $q \mid N$ it would follow that $q \mid (N - p_1 \cdot p_2 \cdots p_r)$ or $q \mid 1$. But any prime is greater than 1 and so $q \nmid 1$. Hence, q must be different from $p_1 \cdot p_2 \cdots p_r$. Therefore, any finite list cannot contain all primes, so there is an infinite number of primes.

- 7. Find all right-angled triangles with relatively prime integer sides and base of given length:
 - (a) 28

▶ Solution. x = 2st = 28 so st = 14 which gives two cases: s = 1, t = 14 and s = 2, t = 7.

Case 1:
$$x = 28$$
, $y = t^2 - s^2 = 14^2 - 1^2 = 195$, $z = t^2 + s^2 = 14^2 + 1^2 = 197$
Case 2: $x = 28$, $y = t^2 - s^2 = 7^2 - 2^2 = 45$, $z = t^2 + s^2 = 7^2 + 2^2 = 53$

(b) 55

▶ Solution. $y = 55 = t^2 - s^2 = (t + s)(t - s)$ Case 1: t + s = 55, t - s = 1. Solving for t, s gives t = 28, s = 27. Thus,

$$x = 2st = 1512, \quad y = 55, \quad z = t^2 + s^2 = 1513.$$

Case 2: t + s = 11, t - s = 5 so t = 8, s = 3. Thus,

$$x = 2st, \quad y = 55, \quad z = t^2 + s^2 = 73.$$

- 8. (a) Find the prime factorization of 600.
 - ▶ Solution. $600 = 2^3 \cdot 3 \cdot 5^2$

(b) $\tau(n)$ is the number of positive divisors of n. Evaluate $\tau(600)$.

► Solution.
$$\tau(600) = \tau(2^3 \cdot 3 \cdot 5^2) = \tau(2^3)\tau(3)\tau(5^2) = (3+1)(1+1)(2+1) = 24$$

- (c) $\sigma(n)$ is the sum of the positive divisors of n. Evaluate $\sigma(600)$.
 - ► Solution.

$$\begin{aligned} \sigma(600) &= \sigma(2^3 \cdot 3 \cdot 5^2) = \sigma(2^3)\sigma(3)\sigma(5^2) \\ &= \frac{2^{3+1} - 1}{2 - 1}(1 + 3)\frac{5^{2+1} - 1}{5 - 1} = 15 \cdot 4 \cdot 31 \\ &= 1860. \end{aligned}$$

(d) $\phi(n)$ is the Euler phi function. Evaluate $\phi(600)$.

▶ Solution.

$$\phi(600) = \phi(2^3 \cdot 3 \cdot 5^2) = \phi(2^3)\phi(3)\phi(5^2)$$

= $(2^3 - 2^2)(3 - 1)(5^2 - 5) = 4 \cdot 2 \cdot 20$
= 160.

(e) $\mu(n)$ is the Möbius function. Evaluate $\mu(600)$.

▶ Solution. Since $4 \mid 600, \mu(600) = 0$.

9. Give a non-trivial factor of $2^{55} - 1$. (Bonus points for two.)

► Solution.

$$2^{55} - 1 = (2^5)^{11} - 1$$

= $(2^5 - 1)((2^5)^{10} + (2^5)^9 + (2^5)^8 + (2^5)^7 + (2^5)^6 + (2^5)^5 + (2^5)^4 + (2^5)^3 + (2^5)^2 + 2^5 + 1)$

Therefore, $2^5 - 1 = 31$ is a factor of $2^{55} - 1$. Similarly,

$$2^{55} - 1 = (2^{11})^5 - 1$$

= $(2^{11} - 1)((2^{11})^4 + (2^{11})^3 + (2^{11})^2 + (2^{11})^1 + 1)$

Therefore, $2^{11} - 1 = 2048 - 1 = 2047$ is also a factor of $2^{55} - 1$.

10. Prove that if $a \mid b$ and $a \mid c$ then $a^2 \mid 7bc$.

▶ Solution. If $a \mid b$ then b = ak for some integer k. If $a \mid c$, then c = am for some integer m. Then

$$7bc = 7(ak)(am) = a^2(7km),$$

and thus $a^2 \mid 7bc$.

11. Use congruences to prove that $x^2 - 5y^2 = 3$ has no integer solutions.

▶ Solution. If $x^2 - 5y^2 = 3$ then $x^2 = 3 + 5y^2$ so $x^2 \equiv 3 \pmod{5}$. However, if $x \equiv 0 \pmod{5}$ then $x^2 \equiv 0 \pmod{5}$, if $x \equiv \pm 1 \pmod{5}$ then $x^2 \equiv 1 \pmod{5}$, and if $x \equiv \pm 2 \pmod{5}$ then $x^2 \equiv 4 \pmod{5}$. Since these cases account for all integers x, it follows that $x^2 \not\equiv 3 \pmod{5}$ so the given equation has no integer solutions.

12. (a) If $F(n) = \sum_{d|n} \sigma(d)$ then evaluate F(175).

▶ Solution. Since $\sigma(n)$ is a multiplicative function, so is F(n). Thus, to evaluate F(175) it is only necessary to evaluae F(7) and $F(5^2)$ since $175 = 5^2 \cdot 7$. But,

$$F(7) = \sigma(1) + \sigma(7) = 1 + (1+7) = 9,$$

and

$$F(5^2) = \sigma(1) + \sigma(5) + \sigma(5^2) = 1 + (1+5) + (1+5+5^2) = 38.$$

Therefore, $F(175) = F(5^2 \cdot 7) = F(5^2)F(7) = 38 \cdot 9 = 342.$

- (b) Evaluate $\sigma(22, 491)$. (Hint: $22, 491 = 27 \cdot 49 \cdot 17$.)
 - ▶ Solution. Since $\sigma(n)$ is multiplicative,

$$\sigma(22, 491) = \sigma(3^3 \cdot 7^2 \cdot 17)$$

= $\sigma(3^3)\sigma(7^2)\sigma(17)$
= $(1 + 3 + 3^2 + 3^3)(1 + 7 + 7^2)(1 + 17)$
= $40 \cdot 57 \cdot 18 = 41,040.$

13. Suppose g(n) is a multiplicative function satisfying $\tau(n)^2 = \sum_{d|n} g(d)$.

(a) Use the Möbius inversion formula to give a formula for g(n).

► Solution. From the Möbius inversion formula $g(n) = \sum_{d|n} \mu(d) \tau^2(n/d)$.

(b) Evaluate $g(5^3)$.

-

Solution. If p is a prime, then

$$g(p^{k}) = \mu(1)\tau^{2}(p^{k}) + \mu(p)\tau^{2}(p^{k-1}) + \mu(p^{2})\tau^{2}(p^{k-2}) + \cdots$$
$$= (k+1)^{2} - k^{2},$$

since $\mu(p^t) = 0$ for $t \ge 2$. Therefore, $g(5^3) = 4^2 - 3^2 = 7$.

- (c) Evaluate g(700).
 - ▶ Solution. Since g is multiplicative and $700 = 2^2 \cdot 5^2 \cdot 7$ we have that

$$g(700) = g(2^2)g(5^2)g(7) = (3^2 - 2^2)(3^2 - 2^2)(2^2 - 1^2) = 75.$$

14. (a) What can you say about the prime factorization of n if $\tau(n) = 8$?

▶ Solution. If $\tau(n) = 8$, then $n = p_1^{k_1} \cdots p_r^{k_r}$ is the prime factorization of n and possible factorization of $\tau(n)$ are given by

$$\tau(p_1^{k_1}\cdots p_r^{k_r}) = (k_1+1)\cdots(k_r+1) = 8 = 2 \cdot 4 = 2 \cdot 2 \cdot 2.$$

This gives $n = p^7$, $n = p_1(p_2)^3$, or $n = p_1p_2p_3$

(b) What is the smallest n with $\tau(n) = 8$.

▶ Solution. The smallest n with $\tau(n) = 8$ is obtained by taking the smallest possible primes in calculating n in part (a). $2^7 = 128$, $2^2 \cdot 3 = 24$, and $2 \cdot 3 \cdot 5 = 30$. Therefore, the smallest n with $\tau(n) = 8$ is n = 24.

(c) Find three n with $\phi(n) = 16$.

▶ Solution. $\phi(p_1^{k_1} \cdots p_r^{k_r}) = \prod_{i=1}^r p_i^{k_i-1}(p_i-1) = 2^4$. If $p-1 \mid 2^4$ then p=2, 3, 5, 17 and if $p^{k-1} \mid 2^4$ then p=2 and $1 \le k \le 5$ Thus some candidates for n are 17, 32, 34, 40, 48, 60.

- 15. (a) Suppose that $d = \operatorname{ord}_m a$. Prove that if $a^n \equiv 1 \pmod{m}$ then $d \mid n$.
 - ▶ Solution. By the division algorithm, n = dq + r where $0 \le r < d$. Then

$$1 \equiv a^n \equiv a^{dq+r} \equiv (a^d)^q a^r \equiv 1^q a^r \pmod{m}.$$

But r < d and d is the smallest positive integer k with $a^k \equiv 1 \pmod{m}$. Thus, r cannot be positive so it must be 0 and hence n = dq. That is $d \mid n$.

(b) Find (with justification) $\operatorname{ord}_m b$ if $b^8 \equiv -1 \pmod{m}$ with $m \geq 2$.

▶ Solution. $b^{16} = (b^8)^2 \equiv (-1)^2 \equiv 1 \pmod{m}$. Therefore, $d - \operatorname{ord}_m b \mid 16 \text{ so } d = 1, 2, 4, 8 \text{ or } 16$. If d = 1, 2, 4, or 8 then $a^8 \equiv 1 \pmod{m}$. But $a^8 \equiv -1 \not\equiv 1 \pmod{m}$ since $m \geq 2$. Thus, d = 16.

16. (a) What is the order of 3 modulo 23?

▶ Solution. From Fermat's theorem $3^{22} \equiv 1 \pmod{23}$. Thus $d = \operatorname{ord}_{23} 3 \mid 22$ so d = 1, 2, 11, or 22. Calculating modulo 23, we have $3^2 \equiv 9, 3^3 = 27 \equiv 4, 3^4 \equiv 12$, $3^8 \equiv 12^2 \equiv 144 \equiv 6, 3^{11} = 3^33^8 \equiv 4 \cdot 6 \equiv 24 \equiv 1$. Thus, $\operatorname{ord}_{23} 3 = 11$ since $3^{11} \equiv 1 \pmod{23}$ but $3^2 \not\equiv 1$.

(b) If the order of b modulo m is 15, what is the order of b^6 modulo m.

```
▶ Solution. If \operatorname{ord}_m b = 15 then \operatorname{ord}_m b^6 = \frac{15}{(15, 6)} = \frac{15}{3} = 5.
```

17. Use the Chinese Remainder Theorem to solve the simultaneous congruences:

$$x \equiv 3 \pmod{5}$$
$$x \equiv 2 \pmod{7}$$
$$x \equiv 1 \pmod{6}$$

▶ Solution. Let $M = 5 \cdot 7 \cdot 6 = 210$, $M_1 = 7 \cdot 6 = 42$, $M - 2 = 5 \cdot 6 = 30$, $M_3 = 5 \cdot 7 = 35$. Then solve the linear congruences:

 $\begin{array}{l} M_1x_1 \equiv 1 \pmod{5} \implies 42x_1 \equiv 1 \pmod{5} \implies 2x_1 \equiv 1 \pmod{5} \implies x_1 \equiv 3 \pmod{5} \\ M_2x_2 \equiv 1 \pmod{7} \implies 30x_2 \equiv 1 \pmod{7} \implies 2x_2 \equiv 1 \pmod{7} \implies x_2 \equiv 4 \pmod{7} \\ M_3x_3 \equiv 1 \pmod{6} \implies 35x_3 \equiv 1 \pmod{6} \implies (-1)x_3 \equiv 1 \pmod{6} \implies x_3 \equiv -1 \pmod{6}. \end{array}$

Then the solution of the simultaneous congruences is

 $x \equiv a_1 M_1 x_1 + a_2 M_2 x_2 + a_3 M_3 x_3 \pmod{M}$ $\equiv 3 \cdot 42 \cdot 3 + 2 \cdot 30 \cdot 4 + 1 \cdot 35 \cdot (-1) \pmod{210}$ $\equiv 583 \equiv 163 \pmod{210}.$

- 18. (a) Use the Euclidean algorithm to compute the greatest common divisor (2517, 2370).
 - ▶ Solution. Use the Euclidean Algorithm:

251723700 2517 1 0 1 23701 |147| = 2517 - 2370-1-1617 $18 = 2370 - 16 \cdot 147$ 129-137 $3 = 147 - 8 \cdot 18$

Thus, $(2517, 2370) = 3 = 2517 \cdot 129 + 2370 \cdot (-137)$.

◄

Solutions

▶ Solution. From part (a), $2517 \cdot 129 + 2370 \cdot (-137) = 3$ and multiplying by 23 gives

$$2517 \cdot 2967 - 2370 \cdot 3151 = 69.$$

That is, $x_0 = 2967$ and $y_0 = 3151$ is one solution to the linear equation. The remaining solutions are given by

$$x_k = x_0 + k \frac{2370}{3} = 2967 + k \cdot 790, \qquad y_k = y_0 + k \frac{2517}{3} = 3151 + k \cdot 839$$

where k is an arbitrary integer.

(c) Solve the linear congruence $2370x \equiv 69 \pmod{2517}$ or explain why there are no solutions.

▶ Solution. From part (b), one solution to this linear congruence is $x = -3151 \pmod{2517}$ or $x \equiv 1883 \pmod{2517}$ is the least residue. Since (2517, 2370) = 3 there are 3 incongruent solutions modulo 2517: $x_0 \equiv 1883, x_1 = 1883 + \frac{2517}{3} = 1883 + 839 = 2722 \equiv 205, x_2 = x_1 + 839 = 1044$

19. (a) For which odd primes p does the Legendre symbol $\left(\frac{2}{p}\right) = 1$?

▶ Solution. $\binom{2}{p} = 1$ if and only if $p \equiv \pm 1 \pmod{8}$.

(b) For which distinct odd primes p, q does the Legendre symbol satisfy $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$?

Solution. When p and q are both congruent to 3 modulo 4.

- (c) Evaluate the Legendre symbol $\left(\frac{431}{1097}\right)$.
 - ▶ Solution. Since $1097 \equiv 1 \pmod{4}$,

$$\begin{pmatrix} 431\\ 1097 \end{pmatrix} = \begin{pmatrix} 1097\\ 431 \end{pmatrix} = \begin{pmatrix} 2 \cdot 431 + 235\\ 431 \end{pmatrix} = \begin{pmatrix} 235\\ 431 \end{pmatrix}$$
$$= \begin{pmatrix} 5\\ 431 \end{pmatrix} \begin{pmatrix} 47\\ 431 \end{pmatrix} = \begin{pmatrix} 431\\ 5 \end{pmatrix} \begin{pmatrix} 47\\ 431 \end{pmatrix}$$
$$= \begin{pmatrix} 1\\ 5 \end{pmatrix} \begin{pmatrix} 47\\ 431 \end{pmatrix} = \begin{pmatrix} 47\\ 431 \end{pmatrix}$$
$$= -\begin{pmatrix} 431\\ 47 \end{pmatrix} = -\begin{pmatrix} 431\\ 47 \end{pmatrix} = -\begin{pmatrix} 9 \cdot 47 + 8\\ 47 \end{pmatrix}$$
$$= -\begin{pmatrix} 8\\ 47 \end{pmatrix} = -\begin{pmatrix} 2^2 \cdot 2\\ 47 \end{pmatrix} = -\begin{pmatrix} 2\\ 47 \end{pmatrix} = -\begin{pmatrix} 2\\ 47 \end{pmatrix} = -1$$

where the last equality is because $47 \equiv -1 \pmod{8}$.

Solutions

20. Find a complete solution to the congruence $x^2 - 5x + 6 \equiv 0 \pmod{187}$. (Note that $187 = 11 \cdot 17$.)

▶ Solution. First solve $x^2 - 5x + 6 \equiv 0 \pmod{11}$ and $x^2 - 5x + 6 \equiv 0 \pmod{17}$. Since 11 and 17 are prime, each of these quadratic congruences has at most 2 incongruent solutions by Lagrange's theorem. Since $x^2 - 5x + 6 = (x - 2)(x - 3)$ it is clear that the first congruence has the solutions $x \equiv 2$, 3 (mod 11) and the second has the solutions $x \equiv 2$, 3 (mod 17). Thus, to solve the original congruence we need to solve the simultaneous systems

$$x \equiv 2, 3 \pmod{11}$$
$$x \equiv 2, 3 \pmod{17}.$$

Since $17 \cdot 2 - 11 \cdot 3 = 1$ we get that $34 \equiv 1 \pmod{11}$; $34 \equiv 0 \pmod{17}$ while $-33 \equiv 0 \pmod{11}$; $-33 \equiv 1 \pmod{17}$. Thus, the solutions of the simultaneous congruences are given by

$$x \equiv \{2, 3\} \cdot 34 + \{2, 3\} \cdot (-33) \pmod{187}.$$

This gives the 4 incongruent solutions

$$x_1 \equiv 2 \cdot 34 - 2 \cdot 33 \equiv 2 \pmod{187}
 x_2 \equiv 2 \cdot 34 - 3 \cdot 33 \equiv -31 \equiv 156 \pmod{187}
 x_3 \equiv 3 \cdot 34 - 2 \cdot 33 \equiv 36 \pmod{187}
 x_4 \equiv 3 \cdot 34 - 3 \cdot 33 \equiv 3 \pmod{187}.$$

21. Solve $x^2 + x + 2 \equiv 0 \pmod{121}$.

▶ Solution. First solve $x^2 + x + 2 \equiv 0 \pmod{11}$. The discriminant is $b^2 - 4ac = 1 - 8 = -7 \equiv 4 \pmod{11}$. The solutions of $y^2 \equiv 4 \pmod{11}$ are $y \equiv \pm 2 \pmod{11}$. Hence the solutions of the quadratic are $x_1 \equiv (-1+2)/2 \equiv 6 \pmod{11}$ and $x_2 \equiv (-1-2)?3 \equiv 8/2 \equiv 4 \pmod{11}$. Extend each of these to a solution of $f(x) = x^2 + x + 2 \pmod{12}$.

Case 1: $x_1 = 6$. Look for a solution modulo 121 of the form $x'_1 = x_1 + 11y$ where y satisfies the linear congruence

$$\frac{f(x_1)}{11} + f'(x_1)y \equiv 0 \pmod{11}.$$

Since f'(x) = 2x + 1 this congruence becomes

$$\frac{f(x_1)}{11} + f'(x_1)y \equiv \frac{44}{11} + 13y \equiv 4 + 2y \pmod{11},$$

and hence $y \equiv -2 \equiv 9 \pmod{11}$. Thus, $x'_1 = x_1 + 11y = 6 + 11 \cdot 9 \equiv 105 \equiv -16 \pmod{11}$.

Case 1: $x_2 = 4$. Look for a solution modulo 121 of the form $x'_2 = x_2 + 11y$ where y satisfies the linear congruence

$$\frac{f(x_2)}{11} + f'(x_2)y \equiv 0 \pmod{11}.$$

Since f'(x) = 2x + 1 this congruence becomes

$$\frac{f(x_2)}{11} + f'(x_2)y \equiv \frac{22}{11} + 9y \equiv 2 - 2y \pmod{11},$$

-

and hence $y \equiv 1 \pmod{11}$. Thus, $x'_2 = x_2 + 11y = 4 + 11 \cdot 1 \equiv 15 \pmod{11}$. Therefore, the only solutions of the quadratic modulo 121 are $x \equiv 15$, 105 (mod 121).

- 22. Determine if each of the following congruences have a solution.
 - (a) $x^2 \equiv 15 \pmod{41}$.

 \blacktriangleright Solution. It is necessary to determine if 15 is a quadratic residue modulo 41. For this, use the Legendre symbol.

$$\begin{pmatrix} \frac{15}{41} \end{pmatrix} = \begin{pmatrix} \frac{5}{41} \end{pmatrix} \begin{pmatrix} \frac{3}{41} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{41}{5} \end{pmatrix} \begin{pmatrix} \frac{41}{3} \end{pmatrix} \text{ since } 41 \equiv 1 \pmod{4}$$

$$= \begin{pmatrix} \frac{5 \cdot 8 + 1}{41} \end{pmatrix} \begin{pmatrix} \frac{13 \cdot 3 + 2}{41} \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \end{pmatrix} \begin{pmatrix} \frac{2}{3} \end{pmatrix}$$

$$= 1 \cdot (-1) = -1.$$

Thus, 15 is a quadratic non-residue modulo 41 so the equation $x^2 \equiv 15 \pmod{41}$ is no solvable.

(b) $x^2 + 5x + 7 \equiv 0 \pmod{97}$.

▶ Solution. It is necessary to determine if the discriminant is a quadratic residue or non-residue modulo 97. The discriminant is $b^2 - 4ac = 25 - 28 = -3$. Thus compute the Legendre symbol

Thus, $x^2 + 5x + 7 \equiv 0 \pmod{97}$ is solvable.

(c) $3x^2 + 4x + 5 \equiv 0 \pmod{51}$.

▶ Solution. Since $51 = 3 \cdot 17$, $3x^2 + 4x + 5 \equiv 0 \pmod{51}$ is solvable if and only if $3x^2 + 4x + 5 \equiv 0 \pmod{3}$ and $3x^2 + 4x + 5 \equiv 0 \pmod{17}$ are both solvable. The first equation is $4x + 5 \equiv 0 \pmod{3}$ which is solvable since (4, 3) = 1. For the second one, the congruence is solvable if and only if the discriminant is a quadratic residue modulo 17. The discriminant is $b^2 - 4ac = 16 - 60 = -44 \equiv 7 \pmod{17}$. Now use the Legendre symbol

$$\begin{pmatrix} \frac{7}{17} \end{pmatrix} = \begin{pmatrix} \frac{17}{7} \end{pmatrix} = \begin{pmatrix} \frac{3}{7} \end{pmatrix}$$
$$= -\begin{pmatrix} \frac{7}{3} \end{pmatrix} = -\begin{pmatrix} \frac{1}{3} \end{pmatrix} = -1.$$

Thus, the discriminant is a quadratic non-residue modulo 17 and hence $3x^2 + 4x + 5 \equiv 0 \pmod{17}$ is not solvable. Therefore, $3x^2 + 4x + 5 \equiv 0 \pmod{51}$ is not solvable.

23. Circle True (T) or False (F). Reasons are not required.

- **T** | F | (a) If $15 \mid a^2$ then $15 \mid a$.
- T F (b) If $x^2 \equiv 1 \pmod{35}$ then $x \equiv \pm 1 \pmod{35}$.
- T (\mathbf{F}) (c) $\{21, -3, 13, -15, -4\}$ is a complete residue system modulo 5.

 $(T) | F | (d) 7^{753} \equiv 2 \pmod{11}.$

- T | F | (e) {1, 3, -3, 9} is a reduced residue system modulo 10.
- \bigcirc F | (f) The Fibonacci numbers satisfy $f_{2n+3} f_{2n+2} = f_{2n+1}$.
- T (g) $\underbrace{727272727272727272727272}_{10 \text{ times}} \equiv 6 \pmod{11}.$
- \bigcirc F | (h) If p is an odd prime then $2^p \equiv 2 \pmod{p}$.
- T $|\mathbf{F}|$ (i) The composition $\tau(\tau(n))$ is a multiplicative function.
- T $|\mathbf{F}|$ (j) If p is prime then $\phi(pm) = \phi(m)$.