Verify the following results using some version of induction. Write your arguments out completely, being sure to identify the statement $P(n)$ appropriately (or the subset S of the positive integers that you will be showing is all of the positive integers).

1. Show that $1+3+5+\cdots+(2 n-1)=n^{2}$ for all integers $n \geq 1$.
2. Show that $2^{2 n-1}+1$ is divisible by 3 for all $n \geq 1$.
3. Show that $f_{2}+f_{4}+\cdots+f_{2 n}=f_{2 n+1}-1$ for all $n \geq 1$, where f_{n} denotes the $n^{\text {th }}$ Fibonacci number.
4. Show that for all $n \geq 1$,

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}} .
$$

5. Show that $2^{n}<n$! for all $n \geq 4$. Recall that for a positive integer $n, n!=n(n-1)(n-$ 2) $\cdots 2 \cdot 1$.
6. Show that any integer $n \geq 12$ can be written as a sum $4 r+5 s$ for some nonnegative integers r, s. (This problem is sometimes called a postage stamp problem. It says that any postage greater than 11 cents can be formed using 4 cent and 5 cent stamps.)
