Verify the following results using some version of induction. Write your arguments out completely, being sure to identify the statement P(n) appropriately (or the subset S of the positive integers that you will be showing is all of the positive integers).

- 1. Show that $1 + 3 + 5 + \dots + (2n 1) = n^2$ for all integers $n \ge 1$.
- 2. Show that $2^{2n-1} + 1$ is divisible by 3 for all $n \ge 1$.
- 3. Show that $f_2 + f_4 + \cdots + f_{2n} = f_{2n+1} 1$ for all $n \ge 1$, where f_n denotes the n^{th} Fibonacci number.
- 4. Show that for all $n \ge 1$,

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}.$$

- 5. Show that $2^n < n!$ for all $n \ge 4$. Recall that for a positive integer $n, n! = n(n-1)(n-2)\cdots 2\cdot 1$.
- 6. Show that any integer $n \ge 12$ can be written as a sum 4r + 5s for some nonnegative integers r, s. (This problem is sometimes called a postage stamp problem. It says that any postage greater than 11 cents can be formed using 4 cent and 5 cent stamps.)