Verify the following results using some version of induction. Write your arguments out completely, being sure to identify the statement P(n) appropriately (or the subset S of the positive integers that you will be showing is all of the positive integers).

1. Show that $1 + 3 + 5 + \dots + (2n - 1) = n^2$ for all integers $n \ge 1$.

▶ Solution. The result is proved by induction. Let S be the subset of positive integers n such that

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$
(*)

We will use induction to show that $S = \{n \in \mathbb{Z} : n \ge 1\}.$

Base Step. If n = 1, the left hand side of equation (*) is 1, while the right hand side is $1^2 = 1$. Thus $1 \in S$.

Induction Step. Suppose that $k \in S$ for a fixed but arbitrary positive integer k. This means that

$$1 + 3 + 5 + \dots + (2k - 1) = k^2$$
.

Now consider the left hand side of equation (*) for n = k + 1. Then,

$$1 + 3 + 5 + \dots + (2k - 1) + (2(k + 1) - 1) = (1 + 3 + 5 + \dots + (2k - 1)) + (2(k + 1) - 1)$$
$$= k^{2} + (2(k + 1) - 1) = k^{2} + 2k + 2 - 1$$
$$= (k + 1)^{2},$$

where the second equality uses the induction hypothesis $k \in S$. This equation then says that if $k \in S$, then so is $k + 1 \in S$. Therefore, by the principle of induction, it follows that S consists of all positive integers, and hence, equation (*) is true for all integers $n \ge 1$.

2. Show that $2^{2n-1} + 1$ is divisible by 3 for all $n \ge 1$.

▶ Solution. The proof is by induction. For an integer $n \ge 1$, let P(n) be the statement " $2^{2n-1} + 1$ is divisible by 3".

Base Step. The statement P(1) is the statement " $2^{2 \cdot 1 - 1} + 1$ is divisible by 3". But $2^{2 \cdot 1 - 1} + 1 = 3$, which is divisible by 3. Thus, P(1) is true.

Induction Step. Now suppose that P(k) is true for some k. This means that $2^{2k-1}+1$ is divisible by 3. Thus $2^{2n-1}+1=3q$ for some integer q. Then

$$2^{2(k+1)-1} + 1 = 2^{2k-1+2} + 1$$

= $2^{2k-1}2^2 + 1 = 2^{2k-1}2^2 + 1 + 3 - 3$
= $2^{2k-1}2^2 + 2^2 - 3 = 2^2(2^{2k-1} + 1) - 3$
= $2^2(3q) - 3 = 3(2^2q - 1).$

Since $2^2q - 1$ is an integer, this shows that $2^{2(k+1)-1} + 1$ is a multiple of 3 whenever $2^{2k-1} + 1$ is a multiple of 3. Therefore, P(k+1) is true whenever P(k) is true, and the principle of induction then shows that P(n) is true for all $n \ge 1$.

- 3. Show that $f_2 + f_4 + \cdots + f_{2n} = f_{2n+1} 1$ for all $n \ge 1$, where f_n denotes the n^{th} Fibonacci number.
 - \blacktriangleright Solution. Let S be the subset of positive integers such that

$$f_2 + f_4 + \dots + f_{2n} = f_{2n+1} - 1.$$
 (*)

We will prove by induction that S consists of all integers $n \ge 1$.

Base Step. For n = 1, equation (*) is $f_2 = f_3 - 1$. Since $f_2 = 1$ and $f_3 = 2$, this is a true statement 1 = 2 - 1, so that $1 \in S$.

Induction Step. Now assume that $k \in S$ for some $k \ge 1$. This means that equation (*) is true for n = k, so that $f_2 + f_4 + \cdots + f_{2k} = f_{2k+1} - 1$. Then,

$$f_2 + f_4 + \dots + f_{2k} + f_{2(k+1)} = (f_2 + f_4 + \dots + f_{2k}) + f_{2(k+1)}$$
$$= (f_{2k+1} - 1) + f_{2k+2} = (f_{2k+1} + f_{2k+2}) - 1$$
$$= f_{2k+3} - 1$$
$$= f_{2(k+1)+1} - 1,$$

where the second equality uses the induction hypothesis $k \in S$. Thus, if $k \in S$, it follows that $k + 1 \in S$ and by the principle of induction, S consists of all integers $n \ge 1$, so equation (*) is true for all $n \ge 1$.

4. Show that for all $n \ge 1$,

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}.$$

▶ Solution. Let P(n) be the statement

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}.$$
 (*)

We will prove that this statement is true for all $n \ge 1$ by induction.

Base Step. If n = 1 then equation (*) becomes $\frac{1}{2^1} = 2 - \frac{1+2}{2^1}$. This is just $\frac{1}{2} = \frac{3}{2}$ which is a true statement.

Induction Step. Now assume that for a particular k that P(k) is true. That is, assume that

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{k}{2^k} = 2 - \frac{k+2}{2^k}.$$

Then for n = k + 1

$$\sum_{j=1}^{k+1} \frac{j}{2^j} = \sum_{j=1}^k \frac{j}{2^j} + \frac{k+1}{2^{k+1}}$$
$$= \left(2 - \frac{k+2}{2^k}\right) + \frac{k+1}{2^{k+1}}$$
$$= 2 - \frac{2k+4}{2^{k+1}} + \frac{k+1}{2^{k+1}}$$
$$= 2 - \frac{2k+4 - (k+1)}{2^{k+1}} = 2 - \frac{k+3}{2^{k+1}}$$
$$= 2 - \frac{(k+1)+2}{2^{k+1}}.$$

Thus, if P(k) is true for k, it is also true for k + 1 and by the principle of induction, P(n) is true for all $n \ge 1$.

5. Show that $2^n < n!$ for all $n \ge 4$. Recall that for a positive integer $n, n! = n(n-1)(n-2)\cdots 2\cdot 1$.

▶ Solution. Let P(n) be the statement " $2^n < n!$ ". We show by induction that P(n) is true for all $n \ge 4$.

Base Step. $2^4 = 16 < 24 = 4!$. Thus P(4) is true.

Induction Step. Now assume that for a particular $k \ge 4$ that P(k) is true. That is, assume that $2^k < k!$. Then

$$2^{k+1} = 2^k \cdot 2 < 2 \cdot k! < (k+1)k! = (k+1)!,$$

where the first < is the induction hypothesis, and the second < is because 2 < k + 1 since $k \ge 4$.

Thus, if P(k) is true for some $k \ge 4$, then so is P(k+1). Hence, by the principle of induction, P(n) is true for all $n \ge 4$, since the base case starts at n = 4.

6. Show that any integer $n \ge 12$ can be written as a sum 4r + 5s for some nonnegative integers r, s. (This problem is sometimes called a postage stamp problem. It says that any postage greater than 11 cents can be formed using 4 cent and 5 cent stamps.)

▶ Solution. Let P(n) be the statement: "n = 4r + 5s for some nonnegative integers r and s." We prove by induction that P(n) is true for all $n \ge 12$.

Base Step. $12 = 4 \cdot 3 + 5 \cdot 0$ so P(12) is true, with r = 3 and s = 0.

Induction Step. Now assume that for a particular $k \ge 12$ that P(k) is true. That is, assume that k = 4r+5s for some nonnegative integers r and s. Then k+1 = 4r+5s+1. Consider two cases:

Case 1: s > 0.

In this case k + 1 = 4r + 5s + 1 = 4r + 5s + 5 - 4 = 4(r - 1) + 5(s + 1) = 4r' + 5s'where $r' = r - 1 \ge 0$ since r > 0 and s' = s + 1 > 0 since $s \ge 0$. Case 2: s = 0.

In this case k = 5s and since $k \ge 12$, we must have $s \ge 3$. Then,

$$k + 1 = 5s + 1 = 5s + 16 - 15 = 5s + 4 \cdot 4 - 5 \cdot 3 = 4 \cdot 4 + 5(s - 3) = 4r' + 5s'$$

where r' = 4 and $s' = s - 3 \ge 0$ since $s \ge 3$.

Thus, in either case, if k = 4r + 5s for some integers $r \ge 0$, $s \ge 0$, then k = 1 = 4r' + 5s' for integers, $r' \ge 0$, $s' \ge 0$.

Thus, if P(k) is true for some $k \ge 12$, then so is P(k+1). Hence, by the principle of induction, P(n) is true for all $n \ge 4$, since the base case starts at n = 12.