Verify the following results using some version of induction. Write your arguments out completely, being sure to identify the statement $P(n)$ appropriately (or the subset S of the positive integers that you will be showing is all of the positive integers).

1. Show that $1+3+5+\cdots+(2 n-1)=n^{2}$ for all integers $n \geq 1$.

- Solution. The result is proved by induction. Let S be the subset of positive integers n such that

$$
\begin{equation*}
1+3+5+\cdots+(2 n-1)=n^{2} \tag{*}
\end{equation*}
$$

We will use induction to show that $S=\{n \in \mathbb{Z}: n \geq 1\}$.
Base Step. If $n=1$, the left hand side of equation (*) is 1, while the right hand side is $1^{2}=1$. Thus $1 \in S$.

Induction Step. Suppose that $k \in S$ for a fixed but arbitrary positive integer k.
This means that

$$
1+3+5+\cdots+(2 k-1)=k^{2}
$$

Now consider the left hand side of equation (*) for $n=k+1$. Then,

$$
\begin{aligned}
1+3+5+\cdots+(2 k-1)+(2(k+1)-1) & =(1+3+5+\cdots+(2 k-1))+(2(k+1)-1 \\
& =k^{2}+(2(k+1)-1)=k^{2}+2 k+2-1 \\
& =(k+1)^{2},
\end{aligned}
$$

where the second equality uses the induction hypothesis $k \in S$. This equation then says that if $k \in S$, then so is $k+1 \in S$. Therefore, by the principle of induction, it follows that S consists of all positive integers, and hence, equation $\left(^{*}\right)$ is true for all integers $n \geq 1$.
2. Show that $2^{2 n-1}+1$ is divisible by 3 for all $n \geq 1$.

- Solution. The proof is by induction. For an integer $n \geq 1$, let $P(n)$ be the statement " $2^{2 n-1}+1$ is divisible by 3 ".
Base Step. The statement $P(1)$ is the statement " $2^{2 \cdot 1-1}+1$ is divisible by 3 ". But $2^{2 \cdot 1-1}+1=3$, which is divisible by 3 . Thus, $P(1)$ is true.

Induction Step. Now suppose that $P(k)$ is true for some k. This means that $2^{2 k-1}+1$ is divisible by 3 . Thus $2^{2 n-1}+1=3 q$ for some integer q. Then

$$
\begin{aligned}
2^{2(k+1)-1}+1 & =2^{2 k-1+2}+1 \\
& =2^{2 k-1} 2^{2}+1=2^{2 k-1} 2^{2}+1+3-3 \\
& =2^{2 k-1} 2^{2}+2^{2}-3=2^{2}\left(2^{2 k-1}+1\right)-3 \\
& =2^{2}(3 q)-3=3\left(2^{2} q-1\right) .
\end{aligned}
$$

Since $2^{2} q-1$ is an integer, this shows that $2^{2(k+1)-1}+1$ is a multiple of 3 whenever $2^{2 k-1}+1$ is a multiple of 3 . Therefore, $P(k+1)$ is true whenever $P(k)$ is true, and the principle of induction then shows that $P(n)$ is true for all $n \geq 1$.
3. Show that $f_{2}+f_{4}+\cdots+f_{2 n}=f_{2 n+1}-1$ for all $n \geq 1$, where f_{n} denotes the $n^{\text {th }}$ Fibonacci number.

- Solution. Let S be the subset of positive integers such that

$$
\begin{equation*}
f_{2}+f_{4}+\cdots+f_{2 n}=f_{2 n+1}-1 \tag{*}
\end{equation*}
$$

We will prove by induction that S consists of all integers $n \geq 1$.
Base Step. For $n=1$, equation $\left(^{*}\right)$ is $f_{2}=f_{3}-1$. Since $f_{2}=1$ and $f_{3}=2$, this is a true statement $1=2-1$, so that $1 \in S$.
Induction Step. Now assume that $k \in S$ for some $k \geq 1$. This means that equation $\left(^{*}\right)$ is true for $n=k$, so that $f_{2}+f_{4}+\cdots+f_{2 k}=f_{2 k+1}-1$. Then,

$$
\begin{aligned}
f_{2}+f_{4}+\cdots+f_{2 k}+f_{2(k+1)} & =\left(f_{2}+f_{4}+\cdots+f_{2 k}\right)+f_{2(k+1)} \\
& =\left(f_{2 k+1}-1\right)+f_{2 k+2}=\left(f_{2 k+1}+f_{2 k+2}\right)-1 \\
& =f_{2 k+3}-1 \\
& =f_{2(k+1)+1}-1,
\end{aligned}
$$

where the second equality uses the induction hypothesis $k \in S$. Thus, if $k \in S$, it follows that $k+1 \in S$ and by the principle of induction, S consists of all integers $n \geq 1$, so equation $\left(^{*}\right)$ is true for all $n \geq 1$.
4. Show that for all $n \geq 1$,

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}
$$

- Solution. Let $P(n)$ be the statement

$$
\begin{equation*}
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}} \tag{*}
\end{equation*}
$$

We will prove that this statement is true for all $n \geq 1$ by induction.
Base Step. If $n=1$ then equation $\left(^{*}\right)$ becomes $\frac{1}{2^{1}}=2-\frac{1+2}{2^{1}}$. This is just $\frac{1}{2}=\frac{3}{2}$ which is a true statement.

Induction Step. Now assume that for a particular k that $P(k)$ is true. That is, assume that

$$
\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{k}{2^{k}}=2-\frac{k+2}{2^{k}} .
$$

Then for $n=k+1$

$$
\begin{aligned}
\sum_{j=1}^{k+1} \frac{j}{2^{j}} & =\sum_{j=1}^{k} \frac{j}{2^{j}}+\frac{k+1}{2^{k+1}} \\
& =\left(2-\frac{k+2}{2^{k}}\right)+\frac{k+1}{2^{k+1}} \\
& =2-\frac{2 k+4}{2^{k+1}}+\frac{k+1}{2^{k+1}} \\
& =2-\frac{2 k+4-(k+1)}{2^{k+1}}=2-\frac{k+3}{2^{k+1}} \\
& =2-\frac{(k+1)+2}{2^{k+1}} .
\end{aligned}
$$

Thus, if $P(k)$ is true for k, it is also true for $k+1$ and by the principle of induction, $P(n)$ is true for all $n \geq 1$.
5. Show that $2^{n}<n$! for all $n \geq 4$. Recall that for a positive integer $n, n!=n(n-1)(n-$ 2) $\cdots 2 \cdot 1$.

- Solution. Let $P(n)$ be the statement " $2^{n}<n!$ ". We show by induction that $P(n)$ is true for all $n \geq 4$.
Base Step. $2^{4}=16<24=4$!. Thus $P(4)$ is true.
Induction Step. Now assume that for a particular $k \geq 4$ that $P(k)$ is true. That is, assume that $2^{k}<k$!. Then

$$
2^{k+1}=2^{k} \cdot 2<2 \cdot k!<(k+1) k!=(k+1)!,
$$

where the first $<$ is the induction hypothesis, and the second $<$ is because $2<k+1$ since $k \geq 4$.

Thus, if $P(k)$ is true for some $k \geq 4$, then so is $P(k+1)$. Hence, by the principle of induction, $P(n)$ is true for all $n \geq 4$, since the base case starts at $n=4$.
6. Show that any integer $n \geq 12$ can be written as a sum $4 r+5 s$ for some nonnegative integers r, s. (This problem is sometimes called a postage stamp problem. It says that any postage greater than 11 cents can be formed using 4 cent and 5 cent stamps.)

- Solution. Let $P(n)$ be the statement: " $n=4 r+5 s$ for some nonnegative integers r and s." We prove by induction that $P(n)$ is true for all $n \geq 12$.
Base Step. $12=4 \cdot 3+5 \cdot 0$ so $P(12)$ is true, with $r=3$ and $s=0$.
Induction Step. Now assume that for a particular $k \geq 12$ that $P(k)$ is true. That is, assume that $k=4 r+5 s$ for some nonnegative integers r and s. Then $k+1=4 r+5 s+1$. Consider two cases:
Case 1: $s>0$.

In this case $k+1=4 r+5 s+1=4 r+5 s+5-4=4(r-1)+5(s+1)=4 r^{\prime}+5 s^{\prime}$ where $r^{\prime}=r-1 \geq 0$ since $r>0$ and $s^{\prime}=s+1>0$ since $s \geq 0$.

Case 2: $s=0$.
In this case $k=5 s$ and since $k \geq 12$, we must have $s \geq 3$. Then,

$$
k+1=5 s+1=5 s+16-15=5 s+4 \cdot 4-5 \cdot 3=4 \cdot 4+5(s-3)=4 r^{\prime}+5 s^{\prime}
$$

where $r^{\prime}=4$ and $s^{\prime}=s-3 \geq 0$ since $s \geq 3$.
Thus, in either case, if $k=4 r+5 s$ for some integers $r \geq 0, s \geq 0$, then $k=1=4 r^{\prime}+5 s^{\prime}$ for integers, $r^{\prime} \geq 0, s^{\prime} \geq 0$.
Thus, if $P(k)$ is true for some $k \geq 12$, then so is $P(k+1)$. Hence, by the principle of induction, $P(n)$ is true for all $n \geq 4$, since the base case starts at $n=12$.

