Do the following exercises from the text:
Section 1.7: 6, 8
6. If a is an integer, prove that one of the numbers $a, a+2$, and $a+4$ is divisible by 3 .

- Solution. Divide a by 3. By the division algorithm, there exist unique integers q and r with $0 \leq r<3$ and $a=3 q+r$. If $r=0$, then $3 \mid a$. If $r=1$, then $a+2=3 q+1+2=3 q+3=3(q+1)$ and $3 \mid(a+2)$. If $r=2$, then $a+4=3 q+2+4=$ $3 q+6=3(q+2)$ and $3 \mid(a+4)$. Therefore, $3 \mid a$, or $3 \mid(a+2)$, or $3 \mid(a+4)$.

8. If a, b, and c are integers with $a^{2}+b^{2}=c^{2}$, show that a and b cannot both be odd.

- Solution. If a and b are both odd, then $a=2 k+1$ and $b=2 m+1$. Hence $a^{2}=4 k^{2}+4 k+1$ and $b^{2}=4 m^{2}+4 m+1$ so $a^{2}+b^{2}=4\left(k^{2}+k+m^{2}+m\right)+2$ so that $a^{2}+b^{2}$ must have remainder 2 when divided by 4. But if $c=2 r$ then $c^{2}=4 r^{2}$ so c^{2} has remainder 0 when divided by 4 , and if $c=2 s+1$, then $c^{2}=4\left(s^{2}+s\right)+1$ so c^{2} has remainder 1 when divided by 4 . Therefore, the square of any integer must be 0 or 1 when divided by 4 . However, if a and b are odd, then we have seen that $a^{2}+b^{2}$ has remainder 2 when divided by 4 . Thus, it is not possible for $a^{2}+b^{2}$ to be the square of an integer if both a and b are odd.

Section 2.1: 4
4. If $m \mid(8 n+7)$ and $m \mid(6 n+5)$, prove that $m= \pm 1$.

- Solution. Since $m \mid(8 n+7)$ and $m \mid(6 n+5)$, and

$$
1=3(8 n+7)-4(6 n+5)
$$

it follows that $m \mid 1$. Therefore, $m= \pm 1$.
Section 2.3: 2, 4, 14
2. (a) Compute $(7700,2233)$ and determine x and y such that

$$
(7700,2233)=7700 x+2233 y
$$

Solution. Use the Euclidean algorithm and record the successive divisiions in the following table:

7700	2233	
1	0	7700
0	1	2233
1	-3	1001
-2	7	231
9	-31	77
-29	100	0

Thus, $(7700,2233)=77=7700 \cdot 9+2233(-31)$.
(b) Compute $(7700,-2233)$ and determine x and y such that

$$
(7700,-2233)=7700 x-2233 y
$$

- Solution. Since, $(a, b)=(a,-b)$ because the divisors of b and $-b$ are the same, it follows that

$$
(7700,-2233)=(7700,2233)=77=7700 \cdot 9+2233 \cdot(-31)
$$

4. If $b \neq 0$ prove that $(0, b)=|b|$.

- Solution. Since $0=0 \cdot|b|$ and $b= \pm 1 \cdot|b|$, it follows that $|b|$ is a common divisor of 0 and b. Let c be any other common divisor of 0 and b. Then $b=c s$ for some integer s and then $|b|=|c s|=|c||s| \geq|c|$ since s is a nonzero integer and hence $|s| \geq 1$. Thus $c \leq|c| \leq|b|$ so that $|b|$ is the largest of the common divisors of 0 and b. That is, $(0, b)=|b|$.

14. Prove that the product of any three consecutive integers is divisible by 6 .

- Solution. Consider any three consecutive integers $a, a+1$ and $a+2$, and let $m=a(a+1)(a+2)$. If a is even then $a=2 k$ and $2 \mid a$. If a is not even then $a=2 k+1$ and $a+1=2 k+2=2(k+1)$ so $2 \mid(a+1)$. In either case, $2 \mid a$ or $2 \mid(a+1)$ and so $2 \mid m$. Similarly, divide a by 3 to get $a=3 q+r$. If $r=0,=3 q$ so $3 \mid a$. If $r=1$, then $a+2=3 q+1+2=3(q+1)$ so $3 \mid(a+2)$. If $r=2$ then $a+1=3 q+1+2=3(q+1)$ so $3 \mid(a+1)$. So 3 divides either a, $a+1$, or $a+2$, and hence $3 \mid m$. Since $2 \mid m$ and $3 \mid m$ and $(2,3)=1$, Theorem 2.13 shows that $2 \cdot 3=6$ divides m.

Section 2.4: 1(c), 4, 5, 8

1. (c) Find [299, 377].

- Solution. First compute $(377,299)$ by the Euclidean algorithm:

377	299	
1	0	377
0	1	299
1	-1	78
-3	4	65
4	-5	13
-23	29	0

From this we conclude that $(377,299)=13$. Then

$$
[377,299]=\frac{377 \cdot 299}{(377,299)}=\frac{377 \cdot 299}{13}=\frac{112723}{13}=8671 .
$$

4. Find $(299,377,403)$ and x, y, and z such that

$$
(299,377,403)=299 x+377 y+403 z
$$

- Solution. By Theorem 2.20 and exercise $1(\mathrm{c}),(299,377,403)=((299,377), 403)=$ $(13,403)=13$ since $403=13 \cdot 31$. From the Euclidean algorithm calculation done in $1(\mathrm{c}), 13=299(-5)+377 \cdot 4$, so

$$
(299,377,403)=13=299(-5)+377 \cdot 4+403 \cdot 0 .
$$

5. Find [299, 377, 403].

- Solution. From 1 (c), $[299,377]=8671$. Then from Theorems 2.21 and 2.19,

$$
[299,377,403]=[[299,377], 403]=[8671,403]=\frac{8671 \cdot 403}{(8671,403)}
$$

Use the Euclidean algorithm to calculate (8671, 403):

8671	403	
1	0	8671
0	1	403
1	-21	208
-1	22	195
2	-43	13
-31	667	0

Hence $(8671,403)=13$ and $[299,377,403]=\frac{8671 \cdot 403}{13}=\frac{3494413}{13}=268801$.
8. For any integer n, prove that $[9 n+8,6 n+5]=54 n^{2}+93 n+40$.

- Solution. Since $(9 n+8)(6 n+5)=54 n^{2}+93 n+40$, the result will follow from Theorem 2.19 if we can show that $(9 n+8,6 n+5)=1$. Since $9 n+8=(6 n+5)+(3 n+3)$ and $6 n+5=2(3 n+3)-1$ it follows that $(9 n+8,6 n+5)=(6 n+5,3 n+3)=$ $(3 n+3,-1)=1$ since the only divisors of -1 are ± 1.

Supplemental Problem: (a) If d and n are positive integers such that $d \mid n$, prove that $\left(2^{d}-1\right) \mid\left(2^{n}-1\right)$.
(Hint: Use the identity $x^{k}-1=(x-1)\left(x^{k-1}+x^{k-2}+\cdots+x+1\right)$.)

- Solution. By assumption, $d \mid n$ so $n=d k$ for some positive integer k. Substitute $x=2^{d}$ into the identity

$$
x^{k}-1=(x-1)\left(x^{k-1}+x^{k-2}+\cdots+x+1\right)
$$

to get

$$
2^{n}-1=2^{k d}-1=\left(2^{d}\right)^{k}-1=\left(2^{d}-1\right)\left(\left(2^{d}\right)^{k-1}+\left(2^{d}\right)^{k-2}+\cdots+\left(2^{d}\right)+1\right)
$$

Thus $2^{n}-1=\left(2^{d}-1\right) s$ where s is the integer $s=\left(2^{d}\right)^{k-1}+\left(2^{d}\right)^{k-2}+\cdots+\left(2^{d}\right)+1$. Hence, $\left(2^{d}-1\right) \mid\left(2^{n}-1\right)$.
(b) Verify that $2^{35}-1$ is divisible by 31 and 127 .

Solution. Since $35=7 \cdot 5$, part (a) shows that $2^{35}-1$ is divisible by both $2^{7}-1=127$ and $2^{5}-1=31$.

