Do the following exercises from the text:
Section 2.5: 1(b), (c), 3, 5, 6

1. Find the canonical representation of each of the following nu;mbers.
(b) $3718=2 \cdot 11 \cdot 13^{2}$
(c) $3234=2 \cdot 3 \cdot 7^{2} \cdot 11$
2. $(3718,3234)=2^{1} \cdot 3^{0} \cdot 7^{0} \cdot 11^{1} \cdot 13^{0}=22$
$[3718,3234]=2^{1} \cdot 3^{1} \cdot 7^{2} \cdot 11^{1} \cdot 13^{2}=546,546$
3. $\tau(3718)=2 \cdot 2 \cdot 3=12, \sigma(3718)=\frac{2^{2}-1}{2-1} \cdot \frac{11^{2}-1}{11-1} \cdot \frac{13^{3}-1}{13-1}=3 \cdot 12 \cdot 183=6588$
4. Find the sum of the squares of the positive divisors of 4725 .

- Solution. The sum of the divisors of $4725=3^{3} \cdot 5^{2} \cdot 7$ is

$$
\sigma(4725)=\left(1+3+3^{2}+3^{3}\right)\left(1+5+5^{2}\right)(1+7)
$$

Similarly, the sum of the squares of the divisors is given by

$$
\begin{aligned}
\sigma^{*}(4725) & =\left(1+3^{2}+3^{4}+3^{6}\right)\left(1+2^{2}+5^{4}\right)\left(1+7^{2}\right) \\
& =\frac{\left(3^{2}\right)^{4}-1}{3^{2}-1} \cdot \frac{\left(5^{2}\right)^{3}-1}{5^{2}-1} \cdot \frac{\left(7^{2}\right)^{2}-1}{7^{2}-1} \\
& =26,691,000 .
\end{aligned}
$$

Section 3.2: 3, 6
3. Try to prove that there are infintely many primes of the form $4 k+1$ by imitating the proof of Theorem 3.3. Why does the proof break down?

- Solution. Suppose there are only finitely many primes of the form $4 k+1$, say p_{1}, p_{2}, \ldots, p_{r}. Consider the number $m=4 p_{1} p_{2} \cdots p_{r}+1$, which is of the form $4 k+1$. Since $m>p_{i}$ for $i=1,2, \ldots, 4$ and $p_{1}, p_{2}, \ldots, p_{r}$ are the only primes of this form, then m must be composite. Therefore, by the Fundamental Theorem of Arithmetic, m must have prime divisors. At this point, the argument of the proof of Theorem 3.3 breaks down since we cannot argue as we did there that m must (in this case) have a prime divisor of the form $4 k+1$. The problem is that the product of two numbers of the form $4 k+3$ is a number of the form $4 k+1$. Thus, all of the prime factors of m could be of the form $4 k+3$, which would not give a new prime of the form $4 k+1$.

6. If $p \geq q \geq 5$ and p and q are bot primes. show that $24 \mid\left(p^{2}-q^{2}\right)$.

- Solution. If p and q are both primes with $p \geq q \geq 5$, then $(2, p)=(3, p)=(2, q)=$ $(3, q)=1$. Thus, $(6, p)=(6, q)=1$. Therefore, we can write $p=6 a \pm 1$ and $q=6 b \pm 1$ with a and b integers and then,

$$
\begin{aligned}
p^{2}-q^{2} & =(6 a \pm 1)^{2}-(6 b \pm 1)^{2} \\
& =36\left(a^{2}-b^{2}\right) \pm 12(a-b) \\
& =12(a-b)[3(a+b) \pm 1]
\end{aligned}
$$

If a and b are both even or both odd then $a-b$ is even and it follows that $24 \mid\left(p^{2}-q^{2}\right)$. If one of a and b is even and the other is odd, then $a+b$ is odd so that $3(a+b) \pm 1$ is even and again $24 \mid\left(p^{2}-q^{2}\right)$.

Section 3.4: 8
8. Let $q=2^{n-1} \cdot p$ where $p=2^{n}-1$ is a Mersenne prime. List all of the divisors of q and show directly that q is a perfect number.

- Solution. The divisors of q are 2^{k} for $0 \leq k \leq n-1$ and $2^{k} p$ for $0 \leq k \leq n-1$. Thus,

$$
\begin{aligned}
\sigma(q) & =\left(1+2+\cdots+2^{n-1}\right)+\left(1+2+\cdots+2^{n-1}\right) p \\
& =\frac{2^{n}-1}{2-1}+\frac{2^{n}-1}{2-1} p \\
& =\left(2^{n}-1\right)(1+p) \\
& =2^{n}\left(2^{n}-1\right)=2 q
\end{aligned}
$$

Therefore, q is a perfect number.

Problems not from the text:

1. Prove that any integer of the form $3 n+2$ has a prime factor of the same form.

- Solution. All primes except for 3 must have remainder 1 or 2 when divided by 3 . Thus they will have the form $3 k+2$ or $3 k+1$. The product of integers of the form $3 k+1$ will also have the form $3 k+1$. Thus, if all the prime divisors of an integer m have the form $3 k+1$, then so does m. Therefore, since the given integer has the form $3 n+2$, it is not possible to have all of the prime divisors of the form $3 k+1$, so at least 1 will have to have the form $3 k+2$.

2. If $p \geq 5$ is a prime number, show that $p^{2}+2$ is composite.
[Hint: p must have one of the two forms $6 k+1$ or $6 k+5$. (Verify this if you use it.)]

- Solution. Since $p \geq 5$ and p is prime, then $(2, p)=(3, p)=1$ so $(6, p)=1$ and we can write $p=6 k \pm 1$. Then

$$
p^{2}+2=(6 k \pm 1)^{2}+2=\left(36 k^{2} \pm 12 k+1\right)+2=3\left(12 k^{2} \pm 4 k+1\right) .
$$

Hence $3 \mid\left(p^{2}+2\right)$ so $p^{2}+2$ is composite.
3. (a) Given that p is a prime and $p \mid a$, prove that $p^{n} \mid a^{n}$.

- Solution. If $p \mid a$ then $a=p c$ for some integer c. Then $a^{n}=p^{n} c^{n}$ so $p^{n} \mid$ a^{n}.
(b) If $(a, b)=p$ where p is prime, what are the possible values of $\left(a^{2}, b^{2}\right),\left(a^{2}, b\right)$, and $\left(a^{3}, b^{3}\right) ?$
- Solution. Since $(a, b)=p$ then $a=p c, b=p d$ where $(c, d)=1$. Then $\left(c^{2}, d^{2}\right)=1$ so $a^{2}=p^{2} c^{2}$ and $b^{2}=p^{2} d^{2}$ so $p^{2}=\left(a^{2}, b^{2}\right) .\left(a^{2}, b\right)=p$ if $p^{2} \nmid b$ or p^{2} if $p^{2} \mid b,\left(a^{3}, b^{3}\right)=p^{3}$.

