Do the following exercises from the text: Section 4.1: 5, 8, 26, 27 Section 4.2: 1 (b), (d); 6 (a) Section 4.3: 5, 7, 8, 23 Section 5.1: 1 (b) (d); 4, 5

Problems not from the text:

- 1. For each part, find the smallest positive x that solves the simultaneous congruences.
 - (a) $x \equiv 3 \pmod{7}$ and $x \equiv 5 \pmod{9}$
 - (b) $x \equiv 3 \pmod{37}$ and $x \equiv 1 \pmod{87}$.
- 2. Show that the integers $m = 3^k \cdot 568$ and $n = 3^k \cdot 638$, where $k \ge 0$, satisfy simultaneously

 $\tau(m) = \tau(n), \qquad \sigma(m) = \sigma(n), \text{ and } \qquad \phi(m) = \phi(m).$

- 3. Establish each of the following assertions:
 - (a) If n is an odd integer, then $\phi(2n) = \phi(n)$.
 - (b) If n is an even integer, then $\phi(2n) = 2\phi(n)$
 - (c) $\phi(3n) = 3\phi(n)$ if and only if $3 \mid n$.
 - (d) $\phi(3n) = 2\phi(n)$ if and only if $3 \nmid n$.