Do the following exercises from the text:
Section 4.1: 5, 8, 26, 27
Section 4.2: 1 (b), (d); 6 (a)
Section 4.3: 5, 7, 8, 23
Section 5.1: 1 (b) (d); 4, 5
Problems not from the text:

1. For each part, find the smallest positive x that solves the simultaneous congruences.
(a) $x \equiv 3(\bmod 7)$ and $x \equiv 5(\bmod 9)$
(b) $x \equiv 3(\bmod 37)$ and $x \equiv 1(\bmod 87)$.
2. Show that the integers $m=3^{k} \cdot 568$ and $n=3^{k} \cdot 638$, where $k \geq 0$, satisfy simultaneously

$$
\tau(m)=\tau(n), \quad \sigma(m)=\sigma(n), \text { and } \quad \phi(m)=\phi(m)
$$

3. Establish each of the following assertions:
(a) If n is an odd integer, then $\phi(2 n)=\phi(n)$.
(b) If n is an even integer, then $\phi(2 n)=2 \phi(n)$
(c) $\phi(3 n)=3 \phi(n)$ if and only if $3 \mid n$.
(d) $\phi(3 n)=2 \phi(n)$ if and only if $3 \nmid n$.
