
Homework #4 Solutions Due: October 7, 2019

Do the following exercises from the text:
Section 4.1: 5, 8, 26, 27

5. Find the least residue modulo 5 of 32 and 320.

I Solution. Since 32 ≡ 4 ≡ −1 (mod 5), and 320 = (32)10 ≡ (−1)10 ≡ 1 (mod 5),
the least residues of 32 and 320 modulo 5 are 4 and 1, respectively. J

8. Show that the numbers −13, −9, −4, −1, 9, 18, 21 for a complete residue system
modulo 7.

I Solution. There are 7 numbers, and the least residues modulo 7 are 1, 5, 3, 6, 2,
4, 0, respectively, no two of which are equal, so they form a complete residue system
modulo 7. J

26. If p is a prime and a2 ≡ 1 (mod p), prove that a ≡ ±1 (mod p).

I Solution. Since a2 ≡ 1 (mod p), it follows that p | (a2−1). Thus, p | (a−1)(a+1)
and by Euclid’s lemma, p | (a − 1) or p | (a + 1). If p | (a − 1), then a ≡ 1 (mod p)
and if p | (a+ 1) then a ≡ −1 (mod p). Therefore, a ≡ ±1 (mod p). J

27. Give an example to show that the result of Exercise 26 is not necessarily valid if p is
not a prime.

I Solution. 32 ≡ 1 (mod 8), but 3 6≡ ±1 (mod 8). J

Section 4.2: 1 (b), (d); 6 (a)

1. Check the following numbers for divisibility by 3, 9, and 11.

(b) 113,058 (d) 371,684

I Solution. (b) s = 1 + 1 + 3 + 0 + 5 + 8 = 18 and t = 8− 5 + 0− 3 + 1− 1 = 0 so
113,058 is divisible by 3, 9, and 11.

(d) s = 29 and t = 5 so 371,684 is not divisible by 3, 9, or 11. J

6. Let a and s be as in Theorem 4.12.

(a) Prove that 4 | a if and only if 4 | (10a1 + a0).

I Solution. a =
∑n

k=0 ak10k = (a0 + 10a1) +
∑n

k=2 ak10k = (10a1 + a0) +
100

∑n
k=2 ak10k−2. Since 4 | 100 it follows that 4 | a if and only if 4 | (10a1+a0. J

Section 4.3: 5, 7, 8, 23
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5. Show that the numbers 3, 32, 33, 34, 35, 36 for a reduced residue system modulo 7.

I Solution. By direct calculation, we have that 3 ≡ 3 (mod 7), 32 ≡ 2 (mod 7),
33 ≡ 6 (mod 7), 34 ≡ 4 (mod 7), 35 ≡ 5 (mod 7), and 36 ≡ 1 (mod 7). Since 1, 2, 3,
4, 5, 6 form a reduced residue system modulo 7, so do 3, 32, 33, 34, 35, 36. J

7. If p is an odd prime and p - a, show that a(p−1)/2 ≡ ±1 (mod p).

I Solution. Since p is an odd prime and p - a Fermat’s theorem applies to give
ap−1 ≡ 1 (mod p). Since p is odd, p − 1 is even and ap−1 = (a(p−1)/2)2. Thus, if
b = a(p−1)/2 we have b2 ≡ 1 (mod p) and by Exercise 26 of Section 4.1, it follows that
b ≡ ±1 (mod p), that is, a(p−1)/2 ≡ ±1 (mod p). J

8. Give an example to show that the result of Exercise 8 is not necessarily true if p is
replaced by an arbitrary positive integer n with (a, n) = 1.

I Solution. If we replace p by 15 and a by 4, we have

4(n−1)/2 = 47 = (42)3 · 4 ≡ (1)3 · 4 ≡ 4 (mod 15)

. J

23. Show by example that φ(mn) is not necessarily equal to φ(m)φ(n) if (m, n) 6= 1.

I Solution. φ(12) = 4, φ(6) = 2, φ(2) = 1, so φ(12) 6= φ(6)φ(2). J

Section 5.1: 1 (b) (d); 4, 5

1. Solve the following conditional congruences.

(b) 15x ≡ 3 (mod 9)

I Solution. Since (15, 9) = 3 there are 3 non-congruent solutions modulo 9.
Since 15 ≡ 6 (mod 9) the congruence is equivalent to 6x ≡ 3 (mod 9), which
by inspection has a solution x0 = 2. The remaining incongruent solutions are
x1 = 2 + 3 = 5 and x2 = 2 + 2 · 3 = 8. J

(d) 35x ≡ 15 (mod 182)

I Solution. Since (35, 182) = 7 and 7 - 15, there are no solutions to this con-
gruence equation. J
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4. When a man cashed a check, the clerk mistook the number of cents for the number
of dollars and vice versa. After spending 68 cents, the man discovered that he still
had precisely twice as much money as the amount for which the check was originally
written. What is the smallest amount for which the check could have been written?

I Solution. Let x denote the number of dollars and y the number of cents for which
the check was originally written. Then 100y+x−68 = 2(100x+y) or 98y−199x = 68.
Apply the Euclidean Algorithm to get 98(−67)− 199(−33) = 1 and multiply by 68 to
get 98(−4556)− 199(−2244) = 68. Thus, one solution in integers of 98y − 199x = 68
is y0 = −4556 and x0 = −2244. By Theorem 5.2, the other solutions in integers
are xk = −2244 + 98k and yk = −4556 − k(−199). The smallest k that will give
positive values for xk and yk is k = 23. This gives xk = −2244 + 98 · 23 = 10 and
yk = −4556 + 23 · 199 = 21. Thus, the check was written for $10.21. J

Problems not from the text:

1. For each part, find the smallest positive x that solves the simultaneous congruences.

(a) x ≡ 3 (mod 7) and x ≡ 5 (mod 9)

I Solution. 7 ·4+9 ·(−3) = 1 so −27 ≡ 1 (mod 7) and −27 ≡ 0 (mod 7), while
28 ≡ 1 (mod 9) and 28 ≡ 0 (mod 7). Thus, x = 3 · (−27) + 5 · 28 = 59 satisfies
the congruences and all other solutions are congruent modulo 9 · 7 = 63. Thus,
59 is the smallest positive solution. J

(b) x ≡ 3 (mod 37) and x ≡ 1 (mod 87).

I Solution. Use the Euclidean Algorithm to find (37, 87):

87 37
1 0 87
0 1 37
1 −2 13 = 87− 2 · 37
−2 5 11 = 37− 2 · 13

3 −7 2 = 13− 1 · 11
−17 40 1 = 11− 5 · 2

Thus, 37 · 40 + 87 · (−17) = 1 and a solution to the simultaneous congruences is

x0 = 3 · 87 · (−17) + 1 · 37 · 40 = −2957.

Other solutions are congruent to x0 modulo 37 · 87 = 3219. Thus, the smallest
positive solution is −2957 + 3219 = 262. J
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2. Show that the integers m = 3k ·568 and n = 3k ·638, where k ≥ 0, satisfy simultaneously

τ(m) = τ(n), σ(m) = σ(n), and φ(m) = φ(m).

I Solution. The prime factorizations are m = 3k · 23 · 71 and n = 3k · 2 · 11 · 29. Then

τ(m) = (k + 1)(3 + 1)(1 + 1) = 8(k + 1)

τ(n) = (k + 1)(1 + 1)(1 + 1)(1 + 1) = 8(k + 1) = τ(m)

σ(m) = σ(3k)

(
24 − 1

2− 1

)
· (1 + 71) = σ(3k) · 15 · 72 = σ(3k) · 1080

σ(n) = σ(3k) · (2 + 1)(11 + 1)(29 + 1) = σ(3k) · 3 · 12 · 30 = 1080 = σ(m)

φ(m) = φ(3k)φ(23)φ(71) = φ(3k) · 4 · 70 = φ(3k) · 280

φ(n) = φ(3k)φ(2)φ(11)φ(29) = φ(3k) · 1 · 10 · 28 = φ(3k) · 280 = φ(m)

J

3. Establish each of the following assertions:

(a) If n is an odd integer, then φ(2n) = φ(n).

I Solution. Since n is odd, (2, n) = 1. Since φ is multiplicative,φ(2n) =
φ(2)φ(n) = φ(n) because φ(2) = 1. J

(b) If n is an even integer, then φ(2n) = 2φ(n)

I Solution. Since n is even, n = 2km where m is odd and k ≥ 1. Then φ(2n) =
φ(2 ·2km) = φ(2k+1m) = φ(2k+1)φ(m) = 2kφ(m) = 2 ·2k−1 ·φ(m) = 2φ(2k)φ(m) =
2φ(2km) = 2φ(n). J

(c) φ(3n) = 3φ(n) if and only if 3 | n.

(d) φ(3n) = 2φ(n) if and only if 3 - n.

I Solution. (c) and (d) are done together as follows: If 3 | n then n = 3km
where (3, m) = 1 and k ≥ 1. Then

φ(3n) = φ(3k+1m) = φ(3k+1)φ(m)

= (3k+1 − 3k)φ(m) = 3(3k − 3k−1)φ(m) = 3φ(3k)φ(m)

= 3φ(3km) = 3φ(n).

If 3 - n, then (3, n) = 1 and φ(3n) = φ(3)φ(n) = 2φ(n).

Since these two cases cover all possibilities for 3n, both (c) and (d) are true. J
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