Do the following exercises from the text:
Section 5.2: 2, 5, 6 (d), 14
2. Find the integer s such that $-2310 \leq x \leq 2310$, and

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 21) \\
x \equiv 2 & (\bmod 20) \\
x \equiv 3 & (\bmod 11) .
\end{array}
$$

- Solution. Since $(21,20)=(21,11)=(20,11)=1$, the Chinese Remainder Theorem applies. First, solve the linear congruences:

$$
\begin{array}{ll}
20 \cdot 11 x \equiv 1 & (\bmod 21) \\
21 \cdot 11 x \equiv 1 & (\bmod 21) \\
21 \cdot 20 x \equiv 1 & (\bmod 11)
\end{array}
$$

For the first one, apply the Euclidean Algorithm to the pair $20 \cdot 11=220$ and 21 to get $220 \cdot(-2)+21 \cdot 21=1$ so $x_{1}=-2$ solves the first congruence. For the second apply the Euclidean Algorithm to $21 \cdot 11=231$ and 20 to get $231 \cdot(-9)+104 \cdot 20=1$ so $x_{2}=-9$ is a solution of the second linear congruence. Similarly $21 \cdot 20=420$ and the Euclidean Algorithm gives $420 \cdot(-5)+191 \cdot 11=1$ so $x_{3}=-5$ is the solution to the third linear congruence. Then a solution to the simultaneous congruences is

$$
x=220 \cdot(-2) \cdot 1+231 \cdot(-4) \cdot 2+420 \cdot(-5) \cdot 3=-10,898
$$

and the solution is unique modulo $21 \cdot 20 \cdot 11=4620$. Thus, the general solution is $x=-10,898+4620 k$ where k is any integer. Taking $k=2$ gives the only solution $-10,898+4620 \cdot 2=-1658$ in the required range.
5. Solve the system

$$
\begin{aligned}
& 2 x \equiv 5 \\
& 4 x(\bmod 7) \\
& x \equiv 3 \\
&(\bmod 6) \\
&(\bmod 5) .
\end{aligned}
$$

There will be two incongruence solutions modulo $210=[7,6,5]$; find both of them.

- Solution. First solve each of the linear congruences separately, and then use the Chinese Remainder Theorem to solve simultaneously. Since $4 \cdot 2=8 \equiv 1(\bmod 7)$, the first linear congruence has the solution $x \equiv 4 \cdot 5 \equiv-1(\bmod 7)$. The third one is already given in solved form. For the second, since the greatest common divisor $(4,6)=2$ and $2 \mid 2$, there are two incongruence solutions to this congruence. Dividing by 2 gives the congruence $2 x \equiv 1(\bmod 3)$ which has the unique solution $x=-1$
modulo 3. The other solution modulo 6 are $-1+(6 / 2) k$ modulo 6 . Hence there are two solutions -1 and $-1+3=2$ modulo 6 . Thus, there are 2 sets of simultaneous congruences to solve:

$$
\begin{aligned}
& x \equiv-1(\bmod 7) \\
& x \equiv-1 \quad(\bmod 6) \text { and } \\
& x \equiv 3 \quad(\bmod 5) \\
& x \equiv-1 \quad(\bmod 7) \\
& x \equiv 3(\bmod 6) \\
&x \equiv 5)
\end{aligned}
$$

To solve these, first solve the three linear congruences

$$
\begin{array}{ll}
30 x \equiv 1 & (\bmod 7) \\
35 x \equiv 1 & (\bmod 6) \\
42 x \equiv 1 & (\bmod 5)
\end{array}
$$

Reducing moduolo 7 , the first congruence becomes $2 x \equiv 1(\bmod 7)$, which has the solution $x \equiv 4(\bmod 7)$. The second has the solution $x \equiv-1(\bmod 6)$, and the third, after reducing moduolo 5 , is $2 x \equiv 1(\bmod 5)$, which has the solution $x \equiv 3(\bmod 5)$. Then the first set of simultaneous congruences has the solution

$$
\begin{aligned}
x_{1} & =30 \cdot 4 \cdot(-1)+35 \cdot(-2) \cdot 2+42 \cdot 3 \cdot 3 \\
& =-120+35+378=293 \\
& \equiv 83 \quad(\bmod 210),
\end{aligned}
$$

and the second set has the solution

$$
\begin{aligned}
x_{2} & =30 \cdot 4 \cdot(-1)+35 \cdot(-1) \cdot 2+42 \cdot 3 \cdot 3 \\
& =-120-70+378 \\
& \equiv 188 \quad(\bmod 210) .
\end{aligned}
$$

Thus, the two solutions of the original system of linear congruences are 83 and 188 $(\bmod 210)$.
6. Solve the following congruences using the method of Theorem 5.3.
(d) $606 x \equiv 138(\bmod 1710)$

- Solution. The prime factorization of 1710 is $1710=2 \cdot 3^{2} \cdot 5 \cdot 19$. Thus, the congruence $606 x \equiv 138(\bmod 1710)$ is equivalent to the simultaneous system of congruences

$$
\begin{aligned}
606 x & \equiv 138 \quad(\bmod 2) \\
606 x & \equiv 138 \quad(\bmod 5) \\
606 x & \equiv 138 \quad(\bmod 9) \\
606 x & \equiv 138 \quad(\bmod 19)
\end{aligned}
$$

Reducing each of these congruences by the respective modulus gives:

$$
\begin{aligned}
& 0 \cdot x \equiv 0 \\
& x(\bmod 2) \\
& 3 x \equiv 3 \\
&(\bmod 5) \\
& 17 x \equiv 5 \\
&(\bmod 9) \\
& \hline
\end{aligned}
$$

Solving these congruences gives:

$$
\begin{aligned}
x & \equiv 0,1 \quad(\bmod 2) \\
x & \equiv 3 \quad(\bmod 5) \\
x & \equiv 1,4,7 \quad(\bmod 9) \\
x & \equiv 7 \quad(\bmod 19) .
\end{aligned}
$$

To solve these simultaneous congruences, we need to first solve the following linear congruences:

$$
\begin{aligned}
& 5 \cdot 9 \cdot 19 x=855 x \equiv 1 \\
& 2 \cdot 9 \cdot 19 x=342 x(\bmod 2) \\
& 2 \cdot 5 \cdot 19 x=190 x(\bmod 5) \\
& 2 \cdot 5 \cdot 9 x=90 x \\
& \equiv 1(\bmod 9) \\
&(\bmod 19)
\end{aligned}
$$

Reducing each of these congruences modulo the respective modulus gives

$$
\begin{array}{rlrl}
x & \equiv 1 & & (\bmod 2) \\
2 x & \equiv 1 & (\bmod 5) \\
x & \equiv 1 & (\bmod 9) \\
14 x & \equiv 1 & (\bmod 19)
\end{array}
$$

The solutions of these are, respectively, $x \equiv 1(\bmod 2), x \equiv 3(\bmod 5), x \equiv 1(\bmod 9)$, and $x \equiv-4(\bmod 19)$. To find all the solutions of the simultaneous congruences, compute:

$$
x \equiv 855 \cdot 1 \cdot(0 \text { or } 1)+342 \cdot 3 \cdot 3+190 \cdot 1 \cdot(1 \text { or } 4 \text { or } 7)+90 \cdot(-4) \cdot 7 \quad(\bmod 1710) .
$$

Do the calculations for each of the 6 choices (0 or 1 in one place and 1 or 4 or 7 in another) to get:

$$
x \equiv 178,463,748,1033,1318,1603 \quad(\bmod 1710)
$$

14. Find all solutions to the system

$$
\begin{aligned}
3 x^{2}+6 x+5 & \equiv 0 \quad(\bmod 7) \\
7 x+4 \equiv 0 & (\bmod 13)
\end{aligned}
$$

which are incongruence modulo 91.

- Solution. By direct calculation, we determine that 1 and -3 are solutions of the quadratic congruence. Since the solutions are unique modulo 7 the solutions of the system are of the form $1+7 y$ and $-3+7 z$ where $7(1+7 y)+4 \equiv 0(\bmod 13)$ and $7(-3+7 z)+4 \equiv 0(\bmod 13)$. These yield $y=8$ and $z=3$ and hence the solutios 57 and 18 which are unique modulo 91 .

Section 5.3: 1, 2, 4

1. Solve:
(a) $5 x^{3}-2 x+1 \equiv 0(\bmod 343)$

- Solution. Since $343=7^{3}$, start by solving $f(x)=5 x^{3}-2 s+1 \equiv 0(\bmod 7)$. This will be done by direct calculation:

x	-3	-2	-1	0	1	2	3
$f(x)$	-128	-35	-6	1	4	37	127

The only value of $f(x)$ that is divisible by 7 is -35 . Thus, the unique solution of $f(x) \equiv 0(\bmod 7)$ is $x_{1} \equiv-2(\bmod 7)$. Now apply Theorem 5.7 to find a solution (if it exists) of $f(x) \equiv 0(\bmod 49)$. Any such solution will have the form $x_{2}=x_{1}+7 y$ where y is a solution of the linear congruence

$$
\frac{f\left(x_{1}\right)}{7}+y f^{\prime}\left(x_{1}\right) \equiv 0 \quad(\bmod 7) .
$$

Since $f^{\prime}(x)=15 x^{2}-2, f^{\prime}\left(x_{1}\right)=f^{\prime}(-2)=58 \equiv 2(\bmod 7)$, so the linear congruence for y is

$$
\frac{-35}{7}+2 y \equiv 0 \quad(\bmod 7)
$$

This is $-5+2 y \equiv 0(\bmod 7)$ which has the unique solution $y \equiv-1(\bmod 7)$, which gives $x_{2}=-2-7=-9$ as the unique solution of $f(x) \equiv 0(\bmod 49)$. Now apply Theorem 5.7 again to find a solution of $f(x) \equiv 0(\bmod 343)$. Such a solution will have the form $x_{3}=x_{2}+49 y$ where y is a solution of the linear congruence

$$
\frac{f\left(x_{2}\right)}{49}+y f^{\prime}\left(x_{2}\right) \equiv 0 \quad(\bmod 7)
$$

Calculate that $f(-9)=-3626=(-74)(49)$ and $f^{\prime}(-9)=15(-9)^{2}-2$. Since we only need $f^{\prime}(-9)$ modulo 7 , we get that $f^{\prime}(-9) \equiv 1 \cdot(-2)^{2}-2 \equiv 2(\bmod 7)$. Thus, the linear congruence for finding x_{3} is $\frac{f(-9)}{49}+y f^{\prime}(-9) \equiv 0(\bmod 7)$ or $-74+2 y \equiv 0(\bmod 7)$ which has the unique solution $y \equiv 2(\bmod 7)$. Hence, $x_{3}=-9+2 \cdot 49=89(\bmod 343)$ is the unique solution of $f(x) \equiv 0(\bmod 343)$.
(b) $5 x^{3}-2 x+1 \equiv 0(\bmod 25)$

- Solution. Proceed as in part (a). From the calculations of $f(x)$ in part (a) we see that $x_{1}=-2$ is the unique solution of $f(x) \equiv 0(\bmod 5)$. A solution modulo 25 is obtained as $x_{2}=x_{1}+5 y$ where y is a solution of the linear congruence

$$
\frac{f\left(x_{1}\right)}{5}+y f^{\prime}\left(x_{1}\right) \equiv 0 \quad(\bmod 5) .
$$

From calculations done is part (a), this linear congruence for y becomes $-7+3 y \equiv$ $0(\bmod 5)$, which has the unique solution $y \equiv-1(\bmod 5)$. Thus, the unique solution of $f(x) \equiv 0(\bmod 25)$ is $x_{2}=-2+5 \cdot(-1)=-7 \equiv 18(\bmod 25)$.
(c) $5 x^{3}-2 x+1 \equiv 0(\bmod 8575)$

- Solution. Since $8575=343 \cdot 25$ the solutions of $f(x) \equiv 0(\bmod 8575)$ are the solutions of the simultaneous system

$$
\begin{array}{ll}
f(x) \equiv 0 & (\bmod 343) \\
f(x) \equiv 0 & (\bmod 25)
\end{array}
$$

These two prime power congruences were solved in parts (a) and (b). Thus, it is simply necessary to solve the simultaneous congruences

$$
\begin{array}{ll}
x \equiv 89 & (\bmod 343) \\
x \equiv 18 & (\bmod 25)
\end{array}
$$

This is done via the Chinese Remainder Theorem. Apply the Euclidean Algorithm to the relative prime integers 343 and 25 to get $7 \cdot 343-96 \cdot 25=1$. Then the solution of the simultaneous congruence is

$$
x=18 \cdot 7 \cdot 343-96 \cdot 25 \cdot 89=-170,382 \equiv 1118(\bmod 8575)
$$

2. Solve $2 x^{9}+2 x^{6}-x^{5}-2 x^{2}-x \equiv 0(\bmod 5)$.

- Solution. Since $2 x^{9}+2 x^{6}-x^{5}-2 x^{2}-x=\left(x^{5}-x\right)\left(2 x^{4}+2 x+1\right)$ and since $x^{5} \equiv x$ (mod 5) for any integer x by Fermat's theorem, it follows that every integer value of x is a solution of the given equation.

4. Solve the system

$$
\begin{aligned}
5 x^{2}+4 x-3 & \equiv 0 \quad(\bmod 6) \\
3 x^{2}+10 & \equiv 0 \quad(\bmod 17)
\end{aligned}
$$

- Solution. We solve each congruence separately, and then solve the system using the Chinese Remainder Theorem. For the first congruence, we have

$$
\begin{aligned}
5 x^{2}+4 x-3 & \equiv 0 \quad(\bmod 6) \\
-x^{2}+4 x-3 & \equiv 0 \quad(\bmod 6) \\
x^{2}-4 x+3 & \equiv 0 \quad(\bmod 6) \\
(x-3)(x-1) & \equiv 0 \quad(\bmod 6) \\
x & \equiv 1 \text { or } 3 \quad(\bmod 6) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
3 x^{2}+10 & \equiv 10 \quad(\bmod 17) \\
3 x^{2} & \equiv 7 \quad(\bmod 17) \\
x^{2} \equiv 18 x^{2} & \equiv 42 \quad \equiv 25 \quad(\bmod 17) \\
x & \equiv \pm 5 \quad(\bmod 17) .
\end{aligned}
$$

Thus, we must solve the four systems:

$$
\begin{array}{lll}
x \equiv 1 & (\bmod 6) & x \equiv 1 \quad(\bmod 6) \\
x \equiv 5 & (\bmod 17) & x \equiv-5 \quad(\bmod 17) \\
x \equiv 3 & (\bmod 6) & x \equiv 3 \quad(\bmod 6) \\
x \equiv 5 & (\bmod 17) & x \equiv-5 \quad(\bmod 17)
\end{array}
$$

Using the Chinese Remainder Theorem, we find that the solutions are 39, 63, 73 and 97 modulo $102=17 \cdot 6$.

Section 5.4: 1, 3, 13

1. Prove the converse of Wilson's Theorem.

- Solution. Wilson's Theorem says that if p is a prime, then $(p-1)!\equiv-1(\bmod p)$. The converse is if $(n-1)!\equiv-1(\bmod n)$, then n is prime. Thus, suppose that $(n-1)!\equiv-1(\bmod n)$. We show that the assumption n is composite leads to a contradiction. If n is composite, then $n=r s$ for $1<r<n$ and $1<s<n$. Thus, $r \mid(n-1)$!, and our assumption is that $(n-1)!=-1+q n$. Since $r \mid n$, it follows that $r \mid 1$, which is a contradiction since $r>1$. Thus, n cannot have any factors less than n, except for 1 . Thus, n is prime.

3. If p is an odd prime, show that $x^{2} \equiv 1(\bmod p)$ has precisely 2 incongruent solutions modulo p.

- Solution. Both 1 and $p-1 \equiv-1(\bmod p)$ are solutions and $1 \not \equiv p-1(\bmod p)$ since p is odd. If there were more than two solutions, it would contradict Lagrange's theorem.

13. If p is an odd prime, use Fermat's theorem to show that $x^{2} \equiv-1(\bmod p)$ has a solution only if $p \equiv 1(\bmod 4)$.

- Solution. Suppose $a^{2} \equiv-1(\bmod p)$. Therefore, $p \nmid a$ and by Fermat's theorem $1 \equiv a^{p-1} \equiv\left(a^{2}\right)^{(p-1) / 2} \equiv(-1)^{(p-1) / 2}(\bmod p)$. Since p is an odd prime, $1 \not \equiv-1$ $(\bmod p)$, so $1 \equiv(-1)^{(p-1) / 2}(\bmod p)$ can only occur if $(p-1) / 2$ is even. That is $(p-1) / 2=2 k$ for some positive integer k, so that $p=4 k+1$. That is $p \equiv 1$ $(\bmod 4)$.

