Do the following exercises from the text:
Section 5.5: 1, 2 (c), (d); 4

1. (a) Determine the quadratic residues modulo 11.

- Solution. Modulo 11 we have $1^{2} \equiv 1,2^{2} \equiv 4,3^{2} \equiv 9,4^{2} \equiv 5,5^{2} \equiv 4$.
(b) Determine the quadratic residues modulo 13.
- Solution. Modulo 13 we have $1^{2} \equiv 1,2^{2} \equiv 4,3^{2} \equiv 9,4^{2} \equiv 3,5^{2} \equiv 12$, $6^{2} \equiv 10$.

2. If possible, solve the following congruences.
(c) $7 x^{2}-4 x+1 \equiv 0(\bmod 11)$

- Solution. Compute the discriminant $b^{2}-4 a c$ modulo 11. In order for the quadratic to be solvable, the equation $y^{2} \equiv b^{2}-4 a c$ must be solvable. In this case $b^{2}-4 a c=16-4 \cdot 7 \cdot 1=16-28=-12 \equiv 10(\bmod 11)$. By exercise 1 (a) 10 is not a square modulo 11 so the equation $y^{2} \equiv 10$ is not solvable, and hence the original quadratic is not solvable modulo 11.
(d) $7 x^{2}-4 x+2 \equiv 0(\bmod 11)$
- Solution. Modulo $11 b^{2}-4 a c=16-56=-40 \equiv 4$. Thus, the discriminant equation $y^{2} \equiv b^{2}-4 a c(\bmod 11)$ is $y^{2} \equiv 4(\bmod 11)$ which has the two solutions $y= \pm 2(\bmod 11)$. To solve the quadratic, it is necessary to solve $2 a x \equiv-b+y$ $(\bmod 11)$ or $14 x \equiv 4 \pm 2$. Since $4 \cdot 14=56 \equiv 1(\bmod 11)$, the two solutions of the quadratic are $x=4(4+2) \equiv 24 \equiv 2(\bmod 11)$ and $x=4(4-2)=8 \equiv 8$ $(\bmod 11)$.

4. If possible solve the following congruences.
(a) $7 x^{2}-4 x+2 \equiv 0(\bmod 7)$

- Solution. Since $7 x^{2} \equiv 0(\bmod 7)$, the congruence becomes the linear congruence $-4 x+2 \equiv 0(\bmod 7)$, which is equivalent to $4 x \equiv 2(\bmod 7)$. Since $4 \cdot 2 \equiv 1$ $(\bmod 7)$, the unique solution is $x \equiv 4(\bmod 7)$.
(b) $7 x^{2}-4 x+2 \equiv 0(\bmod 77)$
- Solution. Since $77=7 \cdot 11$, the quadratic congruence is equivalent to the system of two congruences

$$
\begin{aligned}
7 x^{2}-4 x+2 & \equiv 0 \\
7 x^{2}-4 x+2 & \equiv 0
\end{aligned} \quad(\bmod 7)
$$

The first has the solution $x \equiv 4(\bmod 7)$ from part (a), while the second has the two solutions $x \equiv 2(\bmod 11)$ and $x \equiv 8(\bmod 11)$ from problem $2(\mathrm{~d})$. Thus, the solutions of the original quadratic are obtained by solving the pair of simultaneous congruences

$$
\begin{aligned}
& x \equiv 4 \quad(\bmod 7) \\
& x \equiv 2,8 \quad(\bmod 11) .
\end{aligned}
$$

Since $2 \cdot 11-3 \cdot 7=1$, the solutions of these simultaneous congruences modulo 77 are $4 \cdot 2 \cdot 11+2(-3) 7=46$ and $4 \cdot 2 \cdot 11+8(-3) 7=-80 \equiv 74(\bmod 77)$.

Section 5.6: 1, 8

1. Determine the quadratic character of the following numbers modulo the prime 379 . Note that 307 and 293 are primes.
(a) 3
(b) 5
(c) 60
(d) -1
(e) 307
(f) 293

- Solution. (a) $\left(\frac{3}{379}\right)=\left(\frac{379}{3}\right)(-1)^{\frac{1}{2}(3-1) \frac{1}{2}(379-1)}=\left(\frac{379}{3}\right)(-1)^{1 \cdot 189}=-\left(\frac{379}{3}\right)=-\left(\frac{3 \cdot 126+1}{3}\right)=$ $-\left(\frac{1}{3}\right)=-1$ Thus 3 is a quadratic nonresidue modulo 379 .
(b) $\left(\frac{5}{379}\right)=\left(\frac{379}{5}\right)(-1)^{2 \cdot 189}=\left(\frac{379}{5}\right)=\left(\frac{4}{3}\right)=1$ where the next to last equality is because $379 \equiv 4(\bmod 5)$ and the last equality is because $4=2^{2}$ is a square. Thus 5 is a quadratic residue modulo 379.
(c) $60=2^{2} \cdot 3 \cdot 5$ so $\left(\frac{60}{379}\right)=\left(\frac{2^{2}}{379}\right)\left(\frac{3}{379}\right)\left(\frac{5}{379}\right)=1 \cdot(-1) \cdot 1=-1$ from parts (a) and (b). Hence 60 is a quadratic nonresidue modulo 379.
(d) $\left(\frac{-1}{379}\right)=(-1)^{(379-1) / 2}=(-1)^{189}=-1$ by Euler's criterion. Hence, -1 is a quadratic nonresidue modulo 379.
(e) $\left(\frac{307}{379}\right)=\left(\frac{379}{307}\right)(-1)^{189 \cdot 153}=(-1)\left(\frac{379}{307}\right)=(-1)\left(\frac{72}{307}\right)=(-1)\left(\frac{6^{2} \cdot 2}{307}\right)=(-1)\left(\frac{6^{2}}{307}\right)\left(\frac{2}{307}\right)=$ $(-1)(1)(-1)=1$ where the next to last last equality uses the fact that 6^{2} is a square and $307 \equiv 3(\bmod 8)$. Thus, 307 is a quadratic residue modulo 379 .
$(\mathrm{f})\left(\frac{293}{379}\right)=\left(\frac{379}{293}\right)(-1)^{189 \cdot 146}=\left(\frac{379}{293}\right)=\left(\frac{86}{293}\right)=\left(\frac{2}{293}\right)\left(\frac{43}{293}\right)=\left(\frac{2}{293}\right)\left(\frac{293}{43}\right)=\left(\frac{2}{293}\right)\left(\frac{35}{43}\right)=$ $\left(\frac{2}{293}\right)\left(\frac{5}{43}\right)\left(\frac{7}{43}\right)=\left(\frac{2}{293}\right)\left(\frac{43}{5}\right)\left(\frac{43}{7}\right)(-1)=\left(\frac{2}{293}\right)\left(\frac{3}{5}\right)\left(\frac{1}{7}\right)(-1) \stackrel{(-1)(-1)(1)(-1)=}{=}$ (-1) Thus, 293 is a quadratic nonresidue modulo 379.

8. Note that $2717=11 \cdot 13 \cdot 19$ and determine if $x^{2} \equiv 295(\bmod 2717)$ is solvable.

Solution. Since $2717=11 \cdot 13 \cdot 19$ and 11,13 , and 19 are pairwise relatively prime, then $x^{2} \equiv 295(\bmod 2717)$ is solvable if and only if the system

$$
\begin{aligned}
& x^{2} \equiv 295 \quad(\bmod 11) \\
& x^{2} \equiv 295 \quad(\bmod 13) \\
& x^{2} \equiv 295 \quad(\bmod 19)
\end{aligned}
$$

is solvable. Thus, we need to calculate $\left(\frac{295}{11}\right),\left(\frac{295}{13}\right)$, and $\left(\frac{295}{19}\right)$. The first two Legendre symbols are calculated to be 1. But $\left(\frac{295}{19}\right)=\left(\frac{10}{19}\right)=\left(\frac{2}{19}\right)\left(\frac{5}{19}\right)=(-1)\left(\frac{19}{5}\right)=$ $(-1)\left(\frac{4}{5}\right)=-1$. Thus, the last congruence is not solvable and hence the system is not solvable.

