Do the following exercises from the text: Section 5.5: 1, 2 (c), (d); 4

1. (a) Determine the quadratic residues modulo 11.

▶ Solution. Modulo 11 we have $1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 9, 4^2 \equiv 5, 5^2 \equiv 4$.

(b) Determine the quadratic residues modulo 13.

▶ Solution. Modulo 13 we have $1^2 \equiv 1$, $2^2 \equiv 4$, $3^2 \equiv 9$, $4^2 \equiv 3$, $5^2 \equiv 12$, $6^2 \equiv 10$.

- 2. If possible, solve the following congruences.
 - (c) $7x^2 4x + 1 \equiv 0 \pmod{11}$

▶ Solution. Compute the discriminant $b^2 - 4ac$ modulo 11. In order for the quadratic to be solvable, the equation $y^2 \equiv b^2 - 4ac$ must be solvable. In this case $b^2 - 4ac = 16 - 4 \cdot 7 \cdot 1 = 16 - 28 = -12 \equiv 10 \pmod{11}$. By exercise 1 (a) 10 is not a square modulo 11 so the equation $y^2 \equiv 10$ is not solvable, and hence the original quadratic is not solvable modulo 11.

(d) $7x^2 - 4x + 2 \equiv 0 \pmod{11}$

▶ Solution. Modulo 11 $b^2 - 4ac = 16 - 56 = -40 \equiv 4$. Thus, the discriminant equation $y^2 \equiv b^2 - 4ac \pmod{11}$ is $y^2 \equiv 4 \pmod{11}$ which has the two solutions $y = \pm 2 \pmod{11}$. To solve the quadratic, it is necessary to solve $2ax \equiv -b + y \pmod{11}$ or $14x \equiv 4 \pm 2$. Since $4 \cdot 14 = 56 \equiv 1 \pmod{11}$, the two solutions of the quadratic are $x = 4(4 + 2) \equiv 24 \equiv 2 \pmod{11}$ and $x = 4(4 - 2) = 8 \equiv 8 \pmod{11}$.

- 4. If possible solve the following congruences.
 - (a) $7x^2 4x + 2 \equiv 0 \pmod{7}$

▶ Solution. Since $7x^2 \equiv 0 \pmod{7}$, the congruence becomes the linear congruence $-4x + 2 \equiv 0 \pmod{7}$, which is equivalent to $4x \equiv 2 \pmod{7}$. Since $4 \cdot 2 \equiv 1 \pmod{7}$, the unique solution is $x \equiv 4 \pmod{7}$.

(b) $7x^2 - 4x + 2 \equiv 0 \pmod{77}$

▶ Solution. Since $77 = 7 \cdot 11$, the quadratic congruence is equivalent to the system of two congruences

$$7x^2 - 4x + 2 \equiv 0 \pmod{7}$$

$$7x^2 - 4x + 2 \equiv 0 \pmod{11}$$

The first has the solution $x \equiv 4 \pmod{7}$ from part (a), while the second has the two solutions $x \equiv 2 \pmod{11}$ and $x \equiv 8 \pmod{11}$ from problem 2(d). Thus, the solutions of the original quadratic are obtained by solving the pair of simultaneous congruences

$$x \equiv 4 \pmod{7}$$
$$x \equiv 2, 8 \pmod{11}.$$

Since $2 \cdot 11 - 3 \cdot 7 = 1$, the solutions of these simultaneous congruences modulo 77 are $4 \cdot 2 \cdot 11 + 2(-3)7 = 46$ and $4 \cdot 2 \cdot 11 + 8(-3)7 = -80 \equiv 74 \pmod{77}$.

Section 5.6: 1, 8

Homework #6

1. Determine the quadratic character of the following numbers modulo the prime 379. Note that 307 and 293 are primes.

(a) 3 (b) 5 (c) 60 (d) -1 (e) 307 (f) 293

▶ Solution. (a) $\left(\frac{3}{379}\right) = \left(\frac{379}{3}\right) (-1)^{\frac{1}{2}(3-1)\frac{1}{2}(379-1)} = \left(\frac{379}{3}\right) (-1)^{1\cdot189} = -\left(\frac{379}{3}\right) = -\left(\frac{3\cdot126+1}{3}\right) = -\left(\frac{1}{3}\right) = -1$ Thus 3 is a quadratic nonresidue modulo 379. (b) $\left(\frac{5}{379}\right) = \left(\frac{379}{5}\right) (-1)^{2\cdot189} = \left(\frac{379}{5}\right) = \left(\frac{4}{3}\right) = 1$ where the next to last equality is because $379 \equiv 4 \pmod{5}$ and the last equality is because $4 = 2^2$ is a square. Thus 5 is a quadratic residue modulo 379. (c) $60 = 2^2 \cdot 3 \cdot 5$ so $\left(\frac{60}{379}\right) = \left(\frac{2^2}{379}\right) \left(\frac{3}{379}\right) \left(\frac{5}{379}\right) = 1 \cdot (-1) \cdot 1 = -1$ from parts (a) and (b). Hence 60 is a quadratic nonresidue modulo 379.

 $(d)(\frac{-1}{379}) = (-1)^{(379-1)/2} = (-1)^{189} = -1$ by Euler's criterion. Hence, -1 is a quadratic nonresidue modulo 379.

(-1) Thus, 293 is a quadratic nonresidue modulo 379.

8. Note that $2717 = 11 \cdot 13 \cdot 19$ and determine if $x^2 \equiv 295 \pmod{2717}$ is solvable.

▶ Solution. Since $2717 = 11 \cdot 13 \cdot 19$ and 11, 13, and 19 are pairwise relatively prime, then $x^2 \equiv 295 \pmod{2717}$ is solvable if and only if the system

$$x^{2} \equiv 295 \pmod{11}$$
$$x^{2} \equiv 295 \pmod{13}$$
$$x^{2} \equiv 295 \pmod{13}$$
$$x^{2} \equiv 295 \pmod{19}$$

is solvable. Thus, we need to calculate $\binom{295}{11}$, $\binom{295}{13}$, and $\binom{295}{19}$. The first two Legendre symbols are calculated to be 1. But $\binom{295}{19} = \binom{10}{19} = \binom{2}{19} \binom{5}{19} = (-1) \binom{19}{5} = (-1) \binom{4}{5} = -1$. Thus, the last congruence is not solvable and hence the system is not solvable.