Do the following exercises from the text:
Section 6.3: 1, 2, 3, 4

1. Suppose that A is a member of an RSA public-key system and that his choices for r and s are $r=53 \cdot 71=3763$ and $s=11$. If B wants to send the message NOW to A, what is actually transmitted.

- Solution. Since $r=3763$ the largest block that can be represented is 2 letters. So break NOW into blocks of 2 letters by appending a letter, say X, to the end, to get two blocks NO, represented as 1314, and WX, represented as 2223. What is transmitted is $1314^{11} \equiv 1265(\bmod 3763)$ for NO, and $2223^{11} \equiv 3583(\bmod 3763)$ for WX.

2. Suppose that A is as in Exercise 1 and A received from B the ciphertext message 0737 1627.
(a) Compute A 's deciphering key.

- Solution. The deciphering key t is the solution to $s t \equiv 1(\bmod \phi(r))$. Since $\phi(r)=(53-1)(71-1)=3640, t$ is the solution to $11 t \equiv 1(\bmod 3640)$. Applying the Euclidean Algorithm to find the greatest common divisor of 11 and 3640 gives $t=331$.
(b) Decipher B 's message to A.
- Solution. To decipher, compute $737^{331} \equiv 18(\bmod 3763)$ which corresponds to 0018 or $A S$, and compute the second block as $1627^{331} \equiv 1524(\bmod 3763)$ which corresponds to $P Y$. Thus, the deciphered message is $A S P Y$.

3. Let $r=p q$, where p and q are primes with $p>q$.
(a) Show that $p+q=r-\phi(r)+1$.

- Solution. $\phi(r)=(p-1)(q-1)=p q-p-q+1$, so $p+q=r-\phi(r)+1$.
(b) Show that $p-q=\sqrt{(p+q)^{2}-4 r}$.
- Solution. $\sqrt{(p+q)^{2}-4 r}=\sqrt{p^{2}+2 p q+q^{2}-4 p q}=\sqrt{(p-q)^{2}}=p-q$ since $p>q$.
(c) Find p and q in terms of $\phi(r)$ and r.
- Solution. Since $p=((p+q)+(p-q)) / 2$, using the formulas from (a) and (b) gives

$$
\begin{aligned}
p & =\frac{r-\phi(r)+1+\sqrt{(p+q)^{2}-4 r}}{2} \\
& =\frac{r-\phi(r)+1+\sqrt{(r-\phi(r)+1)^{2}-4 r}}{2} .
\end{aligned}
$$

Similarly, since $q=((p+q)-(p-q)) / 2$, we have

$$
\begin{aligned}
q & =\frac{r-\phi(r)+1-\sqrt{(p+q)^{2}-4 r}}{2} \\
& =\frac{r-\phi(r)+1-\sqrt{(r-\phi(r)+1)^{2}-4 r}}{2} .
\end{aligned}
$$

4. If $r=1829$ and $\phi(r)=1740$ use the results of Exercise 3 to determine p and q.

- Solution.

$$
\begin{aligned}
p & =\frac{1829-1740+1+\sqrt{(1829-1740)+1)^{2}-4 \cdot 1829}}{2} \\
& =\frac{90+\sqrt{90^{2}-7316}}{2} \\
& =\frac{90+28}{2}=59 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
p & =\frac{1829-1740+1-\sqrt{(1829-1740)+1)^{2}-4 \cdot 1829}}{2} \\
& =\frac{90-\sqrt{90^{2}-7316}}{2} \\
& =\frac{90-28}{2}=31 .
\end{aligned}
$$

Section 2.6: 1, 3, 9, 10

1. Construct a table of primitive Pythagorean triples for the following values of (s, t) : $(1,2),(1,4),(2,3),(1,6),(2,5),(3,4),(1,8),(2,7)$ and $(4,5)$.

- Solution.

s	1	1	2	1	2	3	1	2	4
t	2	4	3	6	5	4	8	7	5
x	4	8	12	12	20	24	16	28	40
y	3	15	5	35	21	7	63	45	9
z	5	17	13	37	29	25	65	53	41

3. Give values of x, y, z such that $(x, y, z)=1$ and yet $(x, y)>1,(x, z)>1$, and $(y, z)>1$.

- Solution. $x=2 \cdot 3, y=3 \cdot 5$, and $z=2 \cdot 5$ will do.

9. Show that the only Pythagorean triples in arithmetic progression are of the form $(3 k, 4 k, 5 k)$ for $k \geq 1$.

- Solution. Without loss of generality, we may suppose that $a, a+k, a+2 k$ with $a>0, k>0$ form a Pythagorean triple. Then $a^{2}+(a+k)^{2}=(a+2 k)^{2}$, so that

$$
a^{2}+a^{2}+2 a k+k^{2}=a^{2}+4 a k+4 k^{2} .
$$

Hence, $a^{2}-2 a k-3 k^{2}=0$ so that $(a+k)(a-3 k)=0$ and $a=3 k$ since $a=-k$ is not possible since $k>0$ and $a>0$. Then $a=3 k, a+k=4 k$, and $a+2 k=5 k$ as claimed.
10. Show that any positive odd integer can be the side of a primitive Pythagorean triangle whose other side and hypotenuse are consecutive integers.

- Solution. Let $y=2 k+1$ be any positive integer, let $x=a$ and $z=a+1$. Since $(a, a+1)-1$, it is clear that $(a, 2 k+1, a+1)=1$ also. Now, x, y, z form a Pythagorean triple if and only if $a^{2}+(2 k+1)^{2}=(a+1)^{2}$. Solving for a gives $a=2 k^{2}+2 k$. Thus, the desired triple is $x=2 k^{2}+2 k, y=2 k+1, z=2 k^{2}+2 k+1$.

