Do the following exercises from the text:
Section 7.1: 6
6. Filnd a positive integer n for which there exist at least three distinct representations of n as the sum of two nonzero squares (disregarding order and sign).

- Solution. Since $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b d)^{2}$ and any prime congruent to 1 modulo 4 can be written as a sum of two squares, for an integer with at least 3 prime factors congruent to 1 modulo 4 so that they can be rearranged in 3 different factorizations. Take $n=5 \cdot 13 \cdot 17=1105$. Then

$$
\begin{aligned}
1105 & =\left(2^{2}+1^{2}\right)\left(3^{2}+2^{2}\right)\left(4^{2}+1^{2}\right)=\left(8^{2}+1^{2}\right)\left(4^{2}+1^{2}\right)=(32+1)^{2}+(8-4)^{2}=33^{3}+4^{2} \\
& =\left(1^{2}+8^{2}\right)\left(4^{2}+1^{2}\right)=(4+8)^{2}+(1-32)^{2}=12^{2}+31^{2} \\
& =\left(2^{2}+1^{2}\right)\left((12+2)^{2}+(3-8)^{2}\right)=\left(2^{2}+1^{2}\right)\left(14^{2}+5^{2}\right) \\
& =\left(2^{2}+1^{2}\right)\left(5^{2}+14^{2}\right)=(10+14)^{2}+(28-5)^{2}=24^{2}+23^{2} .
\end{aligned}
$$

Section 5.7: 1, 2, 3, 4, 6, 20

1. By direct calculation determine the following.
(a) $\operatorname{ord}_{17} 2$

- Solution. Modulo $17,2^{1} \equiv 2,2^{2} \equiv 4,2^{3} \equiv 8,2^{4} \equiv 16 \equiv-1,2^{5} \equiv-2$, $2^{6} \equiv-4,2^{7} \equiv-8,2^{8} \equiv-16 \equiv 1$. Thus, ord ${ }_{17} 2=8$.
(b) The least residue of each of $2^{20}, 2^{1024}, 2^{500}$ modulo 17 .
- Solution. Modulo $17,2^{20} \equiv 2^{8 \cdot 2+4} \equiv 1^{2} 2^{4} \equiv 16,2^{1024} \equiv 2^{8 \cdot 128} \equiv 1^{128} \equiv 1$, and $2^{500} \equiv 2^{8 \cdot 62+4} \equiv 1^{62} 2^{4} \equiv 16$.

2. For which positive exponents e is $2^{e} \equiv(\bmod 17)$?

- Solution. From problem $1(\mathrm{a}) \operatorname{ind}_{17} 2=8$. Thus, $2^{e} \equiv 1(\bmod 17)$ if and only if $8 \mid e$. That is, $e=8 k$ for some $k \geq 0$.

3. Determine $\operatorname{ord}_{17} 2^{12}$

- Solution. $\left(2^{12}\right)^{2}=2^{24}=2^{8.3}=\left(2^{8}\right)^{3} \equiv 1^{3} \equiv 1(\bmod 17)$. Therefore, $\operatorname{ord}_{17} 2^{12} \mid 2$ so $\operatorname{ord}_{17} 2^{12}=1$ or 2 . Since $2^{12}=2^{8+4}=2^{8} 2^{4} \equiv 1 \cdot 16 \equiv 16 \not \equiv 1(\bmod 17)$, it follows that $\operatorname{ord}_{17} 2^{12}=1$.

4. By direct calculation, show that 3 is a primitive root modulo 17 and construct a table of indices to the base 3 modulo 17 .

- Solution. Modulo 17 we have the following: $3^{1} \equiv 3,3^{2} \equiv 9,3^{3} \equiv 10,3^{4} \equiv 13$, $3^{5} \equiv 5,3^{6} \equiv 15,3^{7} \equiv 11,3^{8} \equiv 16 \equiv-1,3^{9} \equiv-3 \equiv 14,3^{10} \equiv-9 \equiv 8,3^{11} \equiv-10 \equiv 7$, $3^{12} \equiv-13 \equiv 4,3^{13} \equiv 12,3^{14} \equiv 2,3^{15} \equiv 6,3^{16} \equiv 1$. Therefore, 3 has order 16 and is hence a primitive root modulo 17. The table of indices is then

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\operatorname{ind}_{3} a$	0	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

6. Use the table of indices of Exercise 4 to solve the following if possible.
(a) $7 x \equiv 5(\bmod 17)$

- Solution. Applying ind ${ }_{3}$ to the congruence gives $\operatorname{ind}_{3}(7 x) \equiv \operatorname{ind}_{3} 5(\bmod 16)$. Thus $\operatorname{ind}_{3} 7+\operatorname{ind}_{3} x \equiv \operatorname{ind}_{3} 5(\bmod 16)$. From the index table, this gives $11+$ $\operatorname{ind}_{3} x \equiv 5(\bmod 16)$ so that $\operatorname{ind}_{3} x \equiv-6 \equiv 10(\bmod 16)$, which from the table gives $x \equiv 8(\bmod 17)$.
(b) $x^{7} \equiv 5(\bmod 17)$
- Solution. $\operatorname{ind}_{3} x^{4} \equiv \operatorname{ind}_{3} 5(\bmod 16)$ so $7 \operatorname{ind}_{3} x \equiv 5(\bmod 16)$. Then $\operatorname{ind}_{3} x \equiv$ $49 \operatorname{ind}_{3} x \equiv 35 \equiv 3(\bmod 16)$. From the index table, $x \equiv 10(\bmod 17)$.
(c) $x^{8} \equiv 8(\bmod 17)$
- Solution. $\operatorname{ind}_{3} x^{8} \equiv \operatorname{ind}_{3} 8$ so $8 \operatorname{ind}_{3} x \equiv 10(\bmod 16)$, but this linear congruence is not solvable since $(8,16)=8$ and $8 \nmid 10$.

20. Find $\phi(28)=12$ primitive roots modulo 29 .

- Solution. Use the index table for the prime 29 on Page 244. According to the table, 2 is a primitive root modulo 29. According to a formula proved in class, $\operatorname{ord}_{29} 2^{r}=\frac{28}{(r, 28)}$ since the order of 2 modulo 29 is 28 when it is a primitive element. Thus, $\operatorname{ord}_{29} 2^{r}=28$ if and only if $(r, 28)=1$ and hence $a=2^{r}$ is a primitive element modulo 29 if and only if $r=\operatorname{ind}_{2} a$ is relatively prime to 28 . The indices that are relatively prime to 28 are $1,3,5,9,11,13,15,17,19,23,25,27$. The a 's with these indices are $2,8,3,19$, $18,14,27,21,26,10,11,15$ and these are the primitive roots modulo 29 .

Additional Exercises.

1. Determine which of $2000,2001,2002,2003$, and 2004 can be written as a sum of two squares. For those that can, find a representation as a sum of two squares.

- Solution. $2000=2^{4} \cdot 5^{3}=4^{2} \cdot 5^{2} \cdot 5=20^{2} \cdot\left(2^{2}+1^{2}\right)=40^{2}+20^{2}$
$2001=3 \cdot 23 \cdot 29$ so 2001 has a prime factor congruent to 3 modulo 4 (namely 3 and 23) appearing to an odd power. Hence 2001 cannot be written as a sum of two squares.
$2002=2 \cdot 7 \cdot 11 \cdot 13$ so 2002 has a prime factor congruent to 3 modulo 4 (namely 7 and 11) appearing to an odd power. Hence 2002 cannot be written as a sum of two squares.
$2003 \equiv 3(\bmod 4)$ and hence cannot be written as a sum of two squares.
$2004=2^{2} \cdot 3 \cdot 167$ so 2004 has a prime factor congruent to 3 modulo 4 (namely 3 and 167) appearing to an odd power. Hence 2004 cannot be written as a sum of two squares.

2. Write the integers $3185=5 \cdot 7^{2} \cdot 13 ; 39690=2 \cdot 3^{4} \cdot 5 \cdot 7^{2}$; and $62920=2^{3} \cdot 5 \cdot 11^{2} \cdot 13$ as a sum of two squares.

- Solution. $3185=\left(2^{2}+1^{2}\right) \cdot 7^{2} \cdot\left(3^{2}+2^{2}\right)=7^{2}\left((6+2)^{2}+\left((4-3)^{2}\right)=7^{2}\left(8^{2}+1^{2}\right)=\right.$ $56^{2}+7^{2}$
$39690=2 \cdot 3^{3} \cdot 5 \cdot 7^{2}=63^{2} \cdot 10=63^{2}\left(3^{2}+1^{2}\right)=189^{2}+63^{2}$.
$62920=2^{3} \cdot 5 \cdot 11^{2} \cdot 13=22^{2} \cdot 2 \cdot 65=22^{2}\left(1^{2}+1^{2}\right)\left(8^{2}+1^{2}\right)=22^{2}\left((8+1)^{2}+(1-8)^{2}\right)=$ $22^{2}\left(9^{2}+7^{2}\right)=198^{2}+154^{2}$.

3. Is it true that if m and n are sums of two squares and $m \mid n$, then $\frac{n}{m}$ is a sum of two squares? Prove it is true or give a counterexample.

- Solution. This is true. To prove it, suppose that p is a prime congruent to 3 modulo 4 that divides $\frac{n}{m}$. Then $p \mid n$ and the exponent k of p in the prime factorization of n must be even. Let l be the exponent of p in the prime factorization of m. Then $0 \leq l \leq k$. Since, m is a sum of two squares, then l must be even. Thus the exponent of p in the prime factorization of $\frac{n}{m}$ is $k-l$, which is even. Since p is an arbitrary prime congruent to 3 modulo 4 and dividing $\frac{n}{m}$, it follows from Theorem 7.1 that $\frac{n}{m}$ can be written as a sum of two squares.

